tgoop.com/llm_notes/216
Last Update:
Zen MCP Server: интеграция Claude Code с другими AI-моделями 🤖
Несмотря на то, что Claude Code необычайно быстр и удобен, думаю, что многие из вас уже сталкивались с ситуацией когда он иногда "слегка забывает" предыдущие шаги при работе со сложными задачами из-за ограничений контекстного окна (даже при использовании опции /compact
). В этот момент хочется следовать проверенному временем процессу.
Я когда работаю в Cursor/Windsurf/Roo для анализа существующей кодовой базы обычно использую Gemini 2.5 Pro, а для планирования использую o3 или o3-mini/o4-mini.
При использовании Claude Code у нас есть возможность использовать для планирования и сложного траблшутинга Claude 4 Opus, во всех других случаях - Claude 4 Sonnet.
Claude 4 Opus дорогой и даже при использовании Claude Max 5x плана (за $100 в месяц) можно близко подойти к лимитам его использования, и в голову начинает приходить мысль "а не перейти ли на Max 20x plan за $200 долларов в месяц", которых мне пока что жалко :)
Zen MCP Server позволяет решить эти проблемы, позволяя Claude Code взаимодействовать с другими моделями, у которых и контекстное окно значительно больше, и reasoning-способности на очень хорошем уровне.
Что это дает 📈
• Доступ к Gemini 2.5 Pro с контекстом до 1M токенов
• Работа с GPT O3 и другими моделями
• Возможность передать всю кодовую базу проекта для анализа
Основные инструменты 🛠
1️⃣ chat
— мозговой штурм и обзор кода
2️⃣ thinkdeep
— глубокий анализ сложных проблем
3️⃣ planner
— пошаговое планирование
4️⃣ consensus
— получение мнений от нескольких моделей
5️⃣ codereview
— профессиональный код-ревью
6️⃣ precommit
— проверка перед коммитом
7️⃣ debug
— диагностика и исправление багов
8️⃣ analyze
— анализ больших файлов
9️⃣ refactor
— рефакторинг кода
🔟 tracer
— отслеживание зависимостей
1️⃣1️⃣ testgen
— генерация тестов
1️⃣2️⃣ настраиваемые инструменты
Поддерживаемые провайдеры 🌐
• Google Gemini (нативный API)
• OpenAI (O3 модель)
• OpenRouter (множество моделей через один API)
• Локальные модели (Ollama, vLLM, LM Studio)
Особенности⚡️
• Автоматический выбор подходящей модели для задачи
• Продолжение диалогов между моделями
• Работа с изображениями и диаграммами
• Обход ограничений MCP в 25K токенов
Проект с открытым исходным кодом, лицензия Apache 2.0.
Deepwiki по проекту здесь.
Настройка через Docker занимает около 5 минут.
@llm_notes
#claude #mcp #ai_tools #code_review #gemini
BY Заметки LLM-энтузиаста
Share with your friend now:
tgoop.com/llm_notes/216