LLM_NOTES Telegram 212
Сравнение подходов: как строить AI-агентов в продакшене 🤖

Думаю, что будет интересно всем. Две крупные AI-компании одновременно опубликовали диаметрально противоположные взгляды на архитектуру агентов.
Cognition утверждает "не стройте мульти-агентов", а Anthropic напротив детально описывает свою мульти-агентную систему для Claude Research.

Позиция Cognition: простота как залог надежности 🎯

Основные принципы:
• Общий контекст для всех операций
• Действия несут неявные решения
• Параллельные агенты создают конфликты

Почему мульти-агенты НЕ работают:
1️⃣ Потеря контекста между агентами
2️⃣ Противоречивые решения подагентов
3️⃣ Сложность отладки и координации
4️⃣ Накопление ошибок в цепочке

Cognition предлагает линейную архитектуру с единым потоком выполнения и компрессией истории для длинных задач.

Подход Anthropic: сложность под контролем ⚡️

Архитектура Advanced Research:
• Главный агент-координатор
• Специализированные подагенты для поиска
• Параллельное выполнение задач
• Система цитирования

Ключевые решения:
1️⃣ Детальное делегирование задач
2️⃣ Масштабирование усилий под сложность запроса
3️⃣ Параллельные вызовы инструментов
4️⃣ Расширенный режим мышления

Результаты: мульти-агентная система превосходит одиночного агента на 90% в исследовательских задачах.

Сравнение подходов 📊

Управление контекстом:
• Cognition: единый поток, компрессия истории
• Anthropic: распределенный контекст, память системы

Обработка ошибок:
• Cognition: минимизация точек отказа
• Anthropic: graceful degradation, retry логика

Производительность:
• Cognition: предсказуемость и стабильность
• Anthropic: скорость через распараллеливание задач

Сложность разработки:
• Cognition: простая отладка, линейный флоу
• Anthropic: сложная координация, но больше возможностей

Когда какой подход использовать 🎪

Линейные агенты (Cognition):
• Задачи с высокими требованиями к надежности
• Ограниченные ресурсы на разработку
• Последовательные рабочие процессы

Мульти-агенты (Anthropic):
• Исследовательские задачи
• Высокая ценность результата
• Возможность распараллеливания задач

Выводы 💡

Оба подхода имеют право на существование.

Выбор зависит от:
• Типа задач
• Требований к надежности
• Бюджета на разработку
• Опыта команды

Главное - понимать все trade-offs и не пытаться решить все задачи одним универсальным подходом.

@llm_notes

#agents #multi_agent_systems #production_ai #claude_research #battle #anthropic #cognition



tgoop.com/llm_notes/212
Create:
Last Update:

Сравнение подходов: как строить AI-агентов в продакшене 🤖

Думаю, что будет интересно всем. Две крупные AI-компании одновременно опубликовали диаметрально противоположные взгляды на архитектуру агентов.
Cognition утверждает "не стройте мульти-агентов", а Anthropic напротив детально описывает свою мульти-агентную систему для Claude Research.

Позиция Cognition: простота как залог надежности 🎯

Основные принципы:
• Общий контекст для всех операций
• Действия несут неявные решения
• Параллельные агенты создают конфликты

Почему мульти-агенты НЕ работают:
1️⃣ Потеря контекста между агентами
2️⃣ Противоречивые решения подагентов
3️⃣ Сложность отладки и координации
4️⃣ Накопление ошибок в цепочке

Cognition предлагает линейную архитектуру с единым потоком выполнения и компрессией истории для длинных задач.

Подход Anthropic: сложность под контролем ⚡️

Архитектура Advanced Research:
• Главный агент-координатор
• Специализированные подагенты для поиска
• Параллельное выполнение задач
• Система цитирования

Ключевые решения:
1️⃣ Детальное делегирование задач
2️⃣ Масштабирование усилий под сложность запроса
3️⃣ Параллельные вызовы инструментов
4️⃣ Расширенный режим мышления

Результаты: мульти-агентная система превосходит одиночного агента на 90% в исследовательских задачах.

Сравнение подходов 📊

Управление контекстом:
• Cognition: единый поток, компрессия истории
• Anthropic: распределенный контекст, память системы

Обработка ошибок:
• Cognition: минимизация точек отказа
• Anthropic: graceful degradation, retry логика

Производительность:
• Cognition: предсказуемость и стабильность
• Anthropic: скорость через распараллеливание задач

Сложность разработки:
• Cognition: простая отладка, линейный флоу
• Anthropic: сложная координация, но больше возможностей

Когда какой подход использовать 🎪

Линейные агенты (Cognition):
• Задачи с высокими требованиями к надежности
• Ограниченные ресурсы на разработку
• Последовательные рабочие процессы

Мульти-агенты (Anthropic):
• Исследовательские задачи
• Высокая ценность результата
• Возможность распараллеливания задач

Выводы 💡

Оба подхода имеют право на существование.

Выбор зависит от:
• Типа задач
• Требований к надежности
• Бюджета на разработку
• Опыта команды

Главное - понимать все trade-offs и не пытаться решить все задачи одним универсальным подходом.

@llm_notes

#agents #multi_agent_systems #production_ai #claude_research #battle #anthropic #cognition

BY Заметки LLM-энтузиаста





Share with your friend now:
tgoop.com/llm_notes/212

View MORE
Open in Telegram


Telegram News

Date: |

The visual aspect of channels is very critical. In fact, design is the first thing that a potential subscriber pays attention to, even though unconsciously. As five out of seven counts were serious, Hui sentenced Ng to six years and six months in jail. Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up. The SUCK Channel on Telegram, with a message saying some content has been removed by the police. Photo: Telegram screenshot. With Bitcoin down 30% in the past week, some crypto traders have taken to Telegram to “voice” their feelings.
from us


Telegram Заметки LLM-энтузиаста
FROM American