Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/levels_of_abstraction/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
уровни абстракции@levels_of_abstraction P.11
LEVELS_OF_ABSTRACTION Telegram 11
Пространство смыслов или как мыслит ИИ

tldr: он не использует слова, вместо них - вектора в 1000-мерном пространстве

Возможно, вы уже успели убедиться, что современный ИИ прекрасно воспринимает текстовую информацию — он "понимает" все, что вы ему напишете и "рассуждает" на уровне образованного собеседника. Однако удивительно мало внимания уделяется тому, как ИИ информацию обрабатывает и как образы, выраженные словами, превращаются в понятные машине нули и единицы. Серия постов, где я вместе с вами разбираюсь в возможностях и ограничениях GPT-подобных систем.

Начнем с того как воспринимаем информацию мы. Сознание человека привыкло оперировать словами и связанными с ними образами, позволяя нам складывать конструкции более высоких уровней абстракции. При этом помимо внутренней логики языка, мы осознаем логики причинно-следственных связей, эмоций и чувств, времени и пространства, звука, цвета и так далее. То есть наше сознание хотя и тексто-центрично, языком не исчерпывается (хотя философы на эту тему спорят).

ИИ не такой, кроме текста он не знает вообще ничего и только-только начинает добавлять в свою картину мира изображения. То есть он не понимает категории времени, но помнит все, что о времени было написано, например, с какой вероятностью после слова “время” встречается слово “идёт”, а с какой — “песок, время вода, скажи мне да”. И хотя интерфейсы для нашего взаимодействия с ИИ — это по сути слова, все расчеты в нейронных сетях сводятся к числам. Основой для "понимания" языка у ИИ являются не буквы и слова, а т.н. вектора в многомерном пространстве смыслов (vector embeddings). Поэтому при каждом запросе текст переносится в это пространство смыслов специального типа функцией (word2vec). Эту операцию можно представлять переводом с любого из человеческих языков на язык ИИ. В частном случае openAI у этого пространства 1536 измерений, у google - 768, но это детали. Главное здесь:

1. вектора в этом пространстве описывают все понятия и явлении, которые только могут быть выражены в языке
2. в том что для трехмерного сознания кожаных мешков размерность любого из этих пространств достаточно большое, чтобы не суметь осознать его примерно никогда. привет всем, кто пытался представить 4-мерый куб.
3. несмотря на семантическую природу пространства и привязку к языку, все операции над текстов сводятся к математическим операциям над векторами. их можно складывать и это равносильно сложению смысла слов в предложениях, или умножать — их скалярное произведение описывает, насколько два текста на любом из человеческих языков близки по смыслу между собой. причем для таких расчетов машине больше не нужно ничего "понимать", нужно (заткнуться) и считать.

Например, так выглядит слово “кот” в гугловском пространстве, определенном функцией BERT (фото 1).
Каждая координата этого вектора - число с плавающей точкой (float), которое уже записывается в память компьютера и занимает там 4 байта.
- Каждый такой вектор занимает 4 байта х размерность 768 = 3 кБ
- При этом слово занимает 2 байта на символ UTF-8 х 3 буквы в слове “кот” = 6 Б

Разница в 500 раз. Векторная запись одного слова занимаете памяти как целая страница текста. Дело в том, что помимо самого слова в нем хранится информация о понятии “кот” — сколько у него лап, какие он издает звуки и все, что нашлось в обучающей выборке, точнее какие слова встречались рядом со словом "кот" в текстах обучающей выборки .

Чудо в том, что после всех операций и обратной конвертации этих векторов на человеческий, получаются тексты связные не только на уровне последовательностей слов, но и на уровне причинно-следственных связей, о которых машина не имеет никакого представления. И чудо это заключено в конкретном способе трансформации текста в векторы, в количестве измерений и различных способах оптимизации. И уже существующие способы, хотя и хороши, все еще может быть улучшены значительно (до 40%). И это одна из точек активного приложения усилий ИИ-исследователей прямо сейчас.

1. Демо - уровень абстракции #1 - скрины отсюда ниже
2. Как работает Google BERT
3. Документация openAI

#AI #language
👍10🤯7🔥63



tgoop.com/levels_of_abstraction/11
Create:
Last Update:

Пространство смыслов или как мыслит ИИ

tldr: он не использует слова, вместо них - вектора в 1000-мерном пространстве

Возможно, вы уже успели убедиться, что современный ИИ прекрасно воспринимает текстовую информацию — он "понимает" все, что вы ему напишете и "рассуждает" на уровне образованного собеседника. Однако удивительно мало внимания уделяется тому, как ИИ информацию обрабатывает и как образы, выраженные словами, превращаются в понятные машине нули и единицы. Серия постов, где я вместе с вами разбираюсь в возможностях и ограничениях GPT-подобных систем.

Начнем с того как воспринимаем информацию мы. Сознание человека привыкло оперировать словами и связанными с ними образами, позволяя нам складывать конструкции более высоких уровней абстракции. При этом помимо внутренней логики языка, мы осознаем логики причинно-следственных связей, эмоций и чувств, времени и пространства, звука, цвета и так далее. То есть наше сознание хотя и тексто-центрично, языком не исчерпывается (хотя философы на эту тему спорят).

ИИ не такой, кроме текста он не знает вообще ничего и только-только начинает добавлять в свою картину мира изображения. То есть он не понимает категории времени, но помнит все, что о времени было написано, например, с какой вероятностью после слова “время” встречается слово “идёт”, а с какой — “песок, время вода, скажи мне да”. И хотя интерфейсы для нашего взаимодействия с ИИ — это по сути слова, все расчеты в нейронных сетях сводятся к числам. Основой для "понимания" языка у ИИ являются не буквы и слова, а т.н. вектора в многомерном пространстве смыслов (vector embeddings). Поэтому при каждом запросе текст переносится в это пространство смыслов специального типа функцией (word2vec). Эту операцию можно представлять переводом с любого из человеческих языков на язык ИИ. В частном случае openAI у этого пространства 1536 измерений, у google - 768, но это детали. Главное здесь:

1. вектора в этом пространстве описывают все понятия и явлении, которые только могут быть выражены в языке
2. в том что для трехмерного сознания кожаных мешков размерность любого из этих пространств достаточно большое, чтобы не суметь осознать его примерно никогда. привет всем, кто пытался представить 4-мерый куб.
3. несмотря на семантическую природу пространства и привязку к языку, все операции над текстов сводятся к математическим операциям над векторами. их можно складывать и это равносильно сложению смысла слов в предложениях, или умножать — их скалярное произведение описывает, насколько два текста на любом из человеческих языков близки по смыслу между собой. причем для таких расчетов машине больше не нужно ничего "понимать", нужно (заткнуться) и считать.

Например, так выглядит слово “кот” в гугловском пространстве, определенном функцией BERT (фото 1).
Каждая координата этого вектора - число с плавающей точкой (float), которое уже записывается в память компьютера и занимает там 4 байта.
- Каждый такой вектор занимает 4 байта х размерность 768 = 3 кБ
- При этом слово занимает 2 байта на символ UTF-8 х 3 буквы в слове “кот” = 6 Б

Разница в 500 раз. Векторная запись одного слова занимаете памяти как целая страница текста. Дело в том, что помимо самого слова в нем хранится информация о понятии “кот” — сколько у него лап, какие он издает звуки и все, что нашлось в обучающей выборке, точнее какие слова встречались рядом со словом "кот" в текстах обучающей выборки .

Чудо в том, что после всех операций и обратной конвертации этих векторов на человеческий, получаются тексты связные не только на уровне последовательностей слов, но и на уровне причинно-следственных связей, о которых машина не имеет никакого представления. И чудо это заключено в конкретном способе трансформации текста в векторы, в количестве измерений и различных способах оптимизации. И уже существующие способы, хотя и хороши, все еще может быть улучшены значительно (до 40%). И это одна из точек активного приложения усилий ИИ-исследователей прямо сейчас.

1. Демо - уровень абстракции #1 - скрины отсюда ниже
2. Как работает Google BERT
3. Документация openAI

#AI #language

BY уровни абстракции


Share with your friend now:
tgoop.com/levels_of_abstraction/11

View MORE
Open in Telegram


Telegram News

Date: |

Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.” Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021. While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. Users are more open to new information on workdays rather than weekends. In the next window, choose the type of your channel. If you want your channel to be public, you need to develop a link for it. In the screenshot below, it’s ”/catmarketing.” If your selected link is unavailable, you’ll need to suggest another option.
from us


Telegram уровни абстракции
FROM American