KANTOR_AI Telegram 377
Итак, ответ на вопросы успешно найден в комментариях. Т.к. на картинке датасет выстроился почти в непрерывную кривую, разность между координатами соседних текстов оказалась всегда маленькой. Это значит, что и в исходных признаках при переходе от текста к тексту признаки изменялись лишь чуть-чуть.

Очевидный способ достижения этого результата - забыть обнулять счетчики частот слов, что и сделал студент, о чем и догадался научрук. Пассаж про изучение библиотек был, конечно же, о том, что в sklearn есть готовые текстовые векторизации, которые можно взять из коробки и не накосячить таким образом. Тот факт, что студент забыл обнулять счетчики, проверяется легко: достаточно посмотреть на матрицу признаков, ведь к последнему тексту нулей уже, конечно же, не осталось.

Почему же возникали разрывы? Из-за плохой предобработки текстов были тексты с большим количеством всяких спецсимволов и слов, которые давали очень большой прирост к криво выделенным токенам. В частности, картина из предыдущего поста - это еще после фильтрации части таких спецтекстов. Без фильтрации получалась та, которую вы видите в прикрепленных к посту



tgoop.com/kantor_ai/377
Create:
Last Update:

Итак, ответ на вопросы успешно найден в комментариях. Т.к. на картинке датасет выстроился почти в непрерывную кривую, разность между координатами соседних текстов оказалась всегда маленькой. Это значит, что и в исходных признаках при переходе от текста к тексту признаки изменялись лишь чуть-чуть.

Очевидный способ достижения этого результата - забыть обнулять счетчики частот слов, что и сделал студент, о чем и догадался научрук. Пассаж про изучение библиотек был, конечно же, о том, что в sklearn есть готовые текстовые векторизации, которые можно взять из коробки и не накосячить таким образом. Тот факт, что студент забыл обнулять счетчики, проверяется легко: достаточно посмотреть на матрицу признаков, ведь к последнему тексту нулей уже, конечно же, не осталось.

Почему же возникали разрывы? Из-за плохой предобработки текстов были тексты с большим количеством всяких спецсимволов и слов, которые давали очень большой прирост к криво выделенным токенам. В частности, картина из предыдущего поста - это еще после фильтрации части таких спецтекстов. Без фильтрации получалась та, которую вы видите в прикрепленных к посту

BY Kantor.AI





Share with your friend now:
tgoop.com/kantor_ai/377

View MORE
Open in Telegram


Telegram News

Date: |

Earlier, crypto enthusiasts had created a self-described “meme app” dubbed “gm” app wherein users would greet each other with “gm” or “good morning” messages. However, in September 2021, the gm app was down after a hacker reportedly gained access to the user data. A vandalised bank during the 2019 protest. File photo: May James/HKFP. ‘Ban’ on Telegram 2How to set up a Telegram channel? (A step-by-step tutorial) Hashtags are a fast way to find the correct information on social media. To put your content out there, be sure to add hashtags to each post. We have two intelligent tips to give you:
from us


Telegram Kantor.AI
FROM American