KANTOR_AI Telegram 377
Итак, ответ на вопросы успешно найден в комментариях. Т.к. на картинке датасет выстроился почти в непрерывную кривую, разность между координатами соседних текстов оказалась всегда маленькой. Это значит, что и в исходных признаках при переходе от текста к тексту признаки изменялись лишь чуть-чуть.

Очевидный способ достижения этого результата - забыть обнулять счетчики частот слов, что и сделал студент, о чем и догадался научрук. Пассаж про изучение библиотек был, конечно же, о том, что в sklearn есть готовые текстовые векторизации, которые можно взять из коробки и не накосячить таким образом. Тот факт, что студент забыл обнулять счетчики, проверяется легко: достаточно посмотреть на матрицу признаков, ведь к последнему тексту нулей уже, конечно же, не осталось.

Почему же возникали разрывы? Из-за плохой предобработки текстов были тексты с большим количеством всяких спецсимволов и слов, которые давали очень большой прирост к криво выделенным токенам. В частности, картина из предыдущего поста - это еще после фильтрации части таких спецтекстов. Без фильтрации получалась та, которую вы видите в прикрепленных к посту
🔥21👍8❤‍🔥52



tgoop.com/kantor_ai/377
Create:
Last Update:

Итак, ответ на вопросы успешно найден в комментариях. Т.к. на картинке датасет выстроился почти в непрерывную кривую, разность между координатами соседних текстов оказалась всегда маленькой. Это значит, что и в исходных признаках при переходе от текста к тексту признаки изменялись лишь чуть-чуть.

Очевидный способ достижения этого результата - забыть обнулять счетчики частот слов, что и сделал студент, о чем и догадался научрук. Пассаж про изучение библиотек был, конечно же, о том, что в sklearn есть готовые текстовые векторизации, которые можно взять из коробки и не накосячить таким образом. Тот факт, что студент забыл обнулять счетчики, проверяется легко: достаточно посмотреть на матрицу признаков, ведь к последнему тексту нулей уже, конечно же, не осталось.

Почему же возникали разрывы? Из-за плохой предобработки текстов были тексты с большим количеством всяких спецсимволов и слов, которые давали очень большой прирост к криво выделенным токенам. В частности, картина из предыдущего поста - это еще после фильтрации части таких спецтекстов. Без фильтрации получалась та, которую вы видите в прикрепленных к посту

BY Kantor.AI





Share with your friend now:
tgoop.com/kantor_ai/377

View MORE
Open in Telegram


Telegram News

Date: |

Click “Save” ; In the “Bear Market Screaming Therapy Group” on Telegram, members are only allowed to post voice notes of themselves screaming. Anything else will result in an instant ban from the group, which currently has about 75 members. While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. 3How to create a Telegram channel? So far, more than a dozen different members have contributed to the group, posting voice notes of themselves screaming, yelling, groaning, and wailing in various pitches and rhythms.
from us


Telegram Kantor.AI
FROM American