Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/junkyardmathml/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
Math and ML stuff@junkyardmathml P.187
JUNKYARDMATHML Telegram 187
Claude 3.7? Open AI? Редкоземельный литий? А может быть лучше..117 страничный обзор на приложения нейро-пучков? 🟣

В работе Sheaf theory: from deep geometry to deep learning представлен обзор на пучки (sheaf), начиная с описания математического аппарата, заканчивая приложениями в логике, лингвистике, дизайну алгоритмов, и в анализе данных, особенно для проектирования нейронных сетей.

Topology-fan or ML-enjoyer?

Мета-задача работы
: Сделать математический аппарат теории пучков понятным для заинтересованных, но искушенных CS/AI исследователей 🕸, при этом показать алгебраическим геометрам/топологам 🤓, что их конструкции практически применимы в сельском хозяйстве (stalks).

Что такое Пучки? В общем случае, это способ сопоставить геометрическому объекту G категорию V (конечных множеств, векторных пространств итд). На практике, это нужно для того, чтобы погрузить структуру G в более удобную среду, способную представлять и обрабатывать сигналы, используя всё "вычислительное богатство" категории V для описания G.

Утверждение: Пучки - способ алгебраизации геометрии.

Когда мы работаем с реальными данными, мы хотим найти наилучшую геометрическую структуру для их кодирования, чтобы запускать поверх этой структуры нейронки и извлекать эмбеддинги. Простые отношения кодируются графами, однако уже давно понятно, что для более сложных данных это слишком бедная структура, и нужно кодировать данные гиперграфами, клеточными, комбинаторными, симплициальными комплексами, итд. Этот нарратив лежит в основе Topological deep learning. Все перечисленные структуры эффективно кодируются наиболее общей - частично-упорядоченным множеством poset, далее просто S(G).

Абстрактное определение пучка D: Это функтор из категории S в целевую категорию V (для задач ML, векторных пространств). Для s_1 \in S, есть элемент D(s_1) \in V, называемый stalk (росток) и для s_1 < s_2 (где < отношение порядка) мы имеем отображения D(s_1) 📝 D(s_2), называемые restriction map. Для формальной корректности этого определения нужно выполнение еще некоторых условий, подробнее в работе.

Частный случай: для графа G: пучок D(G) определяется как: векторные пространства над вершинами V_n, ребрами V_e, а также линейные отображения из вершин в ребра, обозначим как F_v,e отображение из вершины v в ребро e. Операторы F образуют Лапласиан пучка L (обобщение классического лапласиана для графа).

Определим глобальное сечение: для вершин v и w на концах ребра e, выбираем такие состояния x_v, x_w \in D(G) , что F_ve = F_we (local state), делаем такой выбор состояний для всех вершин. Множество этих состояний T кодирует глобальное "равновесное" состояние системы (global).

Утверждение: Пучки реализуют концептуальный фрейморк и философию "local-to-global'. Локальный консенсус приводит к глобальному равновесию.

Этот взгляд используется как дизайн-паттерн некоторых классических алгоритмов, например в работе A sheaf-theoretic approach to pattern matching and related problems классический алгоритм Кнута–Морриса–Пратта для строк переговаривается через этот фреймворк и сводит к задаче сабграф-матчинга.

Процесс поиска состояния равновесия T очень важен для приложений. Частный случай его поиска это диффузия пучка - динамическая система, градиентный спуск по функции энергии Дирихле, которая измеряет на сколько далеко текущее состояние системы от состояния равновесия, а скорость сходимости диффузии пучка определяется спектром его Лапласиана. И в целом характеристики Лапласиана могут много говорить про свойства геометрической структуры S. Важно подчеркнуть, что нарратив про диффузию это только частный случай, как можно работать с пучками, реально же пучки это намного больше, чем просто история про графы.

Далее, мы обсудим приложения пучков.
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/junkyardmathml/187
Create:
Last Update:

Claude 3.7? Open AI? Редкоземельный литий? А может быть лучше..117 страничный обзор на приложения нейро-пучков? 🟣

В работе Sheaf theory: from deep geometry to deep learning представлен обзор на пучки (sheaf), начиная с описания математического аппарата, заканчивая приложениями в логике, лингвистике, дизайну алгоритмов, и в анализе данных, особенно для проектирования нейронных сетей.

Topology-fan or ML-enjoyer?

Мета-задача работы
: Сделать математический аппарат теории пучков понятным для заинтересованных, но искушенных CS/AI исследователей 🕸, при этом показать алгебраическим геометрам/топологам 🤓, что их конструкции практически применимы в сельском хозяйстве (stalks).

Что такое Пучки? В общем случае, это способ сопоставить геометрическому объекту G категорию V (конечных множеств, векторных пространств итд). На практике, это нужно для того, чтобы погрузить структуру G в более удобную среду, способную представлять и обрабатывать сигналы, используя всё "вычислительное богатство" категории V для описания G.

Утверждение: Пучки - способ алгебраизации геометрии.

Когда мы работаем с реальными данными, мы хотим найти наилучшую геометрическую структуру для их кодирования, чтобы запускать поверх этой структуры нейронки и извлекать эмбеддинги. Простые отношения кодируются графами, однако уже давно понятно, что для более сложных данных это слишком бедная структура, и нужно кодировать данные гиперграфами, клеточными, комбинаторными, симплициальными комплексами, итд. Этот нарратив лежит в основе Topological deep learning. Все перечисленные структуры эффективно кодируются наиболее общей - частично-упорядоченным множеством poset, далее просто S(G).

Абстрактное определение пучка D: Это функтор из категории S в целевую категорию V (для задач ML, векторных пространств). Для s_1 \in S, есть элемент D(s_1) \in V, называемый stalk (росток) и для s_1 < s_2 (где < отношение порядка) мы имеем отображения D(s_1) 📝 D(s_2), называемые restriction map. Для формальной корректности этого определения нужно выполнение еще некоторых условий, подробнее в работе.

Частный случай: для графа G: пучок D(G) определяется как: векторные пространства над вершинами V_n, ребрами V_e, а также линейные отображения из вершин в ребра, обозначим как F_v,e отображение из вершины v в ребро e. Операторы F образуют Лапласиан пучка L (обобщение классического лапласиана для графа).

Определим глобальное сечение: для вершин v и w на концах ребра e, выбираем такие состояния x_v, x_w \in D(G) , что F_ve = F_we (local state), делаем такой выбор состояний для всех вершин. Множество этих состояний T кодирует глобальное "равновесное" состояние системы (global).

Утверждение: Пучки реализуют концептуальный фрейморк и философию "local-to-global'. Локальный консенсус приводит к глобальному равновесию.

Этот взгляд используется как дизайн-паттерн некоторых классических алгоритмов, например в работе A sheaf-theoretic approach to pattern matching and related problems классический алгоритм Кнута–Морриса–Пратта для строк переговаривается через этот фреймворк и сводит к задаче сабграф-матчинга.

Процесс поиска состояния равновесия T очень важен для приложений. Частный случай его поиска это диффузия пучка - динамическая система, градиентный спуск по функции энергии Дирихле, которая измеряет на сколько далеко текущее состояние системы от состояния равновесия, а скорость сходимости диффузии пучка определяется спектром его Лапласиана. И в целом характеристики Лапласиана могут много говорить про свойства геометрической структуры S. Важно подчеркнуть, что нарратив про диффузию это только частный случай, как можно работать с пучками, реально же пучки это намного больше, чем просто история про графы.

Далее, мы обсудим приложения пучков.

BY Math and ML stuff




Share with your friend now:
tgoop.com/junkyardmathml/187

View MORE
Open in Telegram


Telegram News

Date: |

A vandalised bank during the 2019 protest. File photo: May James/HKFP. Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram. Clear Ng, who had pleaded not guilty to all charges, had been detained for more than 20 months. His channel was said to have contained around 120 messages and photos that incited others to vandalise pro-government shops and commit criminal damage targeting police stations. Telegram offers a powerful toolset that allows businesses to create and manage channels, groups, and bots to broadcast messages, engage in conversations, and offer reliable customer support via bots.
from us


Telegram Math and ML stuff
FROM American