JDATA_BLOG Telegram 425
Привет, друзья!

Половину лета делала рисерч на предмет того, нужно ли отдельно как-то разбирать XAI для других модальностей. Оказалось, почти не нужно, но есть что-то, чем всё-таки здорово поделиться. И сегодня в программе

Библиотеки для interpretability на Time Series данных.

1. TSInterpret — для интерпретации моделей, обученных задаче классификации на временных рядах. В библиотеке два типа методов:

— Instance-based — методы, основанные на конкретной точке данных. Все доступные методы в библиотеке построены на контрфактуальных примерах. Разница — в построении контрафакта — один основан на шейплейтах (обратите внимание на красоту слова), второй основан на замене кусочков ряда признаками для другого объекта из train-ser, третий — на эволюционном алгоритме.

— Feature attribution methods — методы, основанные на получение важных признаков, определяющих поведение модели. В библиотеке всего два метода — один расширяет тепловые карты, второй — основан на LIME.

2. TimeInterpret — библиотека в основном построенная на Feature attribution methods, причем многие методы — расширение классических XAI методов с поправкой на временной ряд.

Методы в основном основаны на вычисление важности либо через градиент, либо через маскирование.

3. TSCaptum — библиотека, полностью построенная на адаптации методов из библиотеки Captum под временные ряда и библиотеки для работы с временными рядами, типа aeon toolkit.

Ещё можно отдельно подсмотреть код тут (CAM для Multivariative TS), пример полного XAI-workflow тут, а статьи собраны в этом прекрасном репозитории.

__________________

А ещё вчера с коллегами закинули статью сюда, и это был безумно великолепный опыт подготовки материалов к не университетским конфам!

Даже если будет реджект (но это мы узнаем только в сентябре) — работа дала много новых навыков. И, конечно, бесспорно лучших коллег, потому что сабмиты мы делали в 2 часа ночи по GMT +3, и в час ночи по IST и GMT+2.

Думаю, про это ещё напишу, если вам интересно! Как-то дайте знать)

Отличного вам дня,
Ваш Дата-автор!
8🔥1💩1😍1🤣1



tgoop.com/jdata_blog/425
Create:
Last Update:

Привет, друзья!

Половину лета делала рисерч на предмет того, нужно ли отдельно как-то разбирать XAI для других модальностей. Оказалось, почти не нужно, но есть что-то, чем всё-таки здорово поделиться. И сегодня в программе

Библиотеки для interpretability на Time Series данных.

1. TSInterpret — для интерпретации моделей, обученных задаче классификации на временных рядах. В библиотеке два типа методов:

— Instance-based — методы, основанные на конкретной точке данных. Все доступные методы в библиотеке построены на контрфактуальных примерах. Разница — в построении контрафакта — один основан на шейплейтах (обратите внимание на красоту слова), второй основан на замене кусочков ряда признаками для другого объекта из train-ser, третий — на эволюционном алгоритме.

— Feature attribution methods — методы, основанные на получение важных признаков, определяющих поведение модели. В библиотеке всего два метода — один расширяет тепловые карты, второй — основан на LIME.

2. TimeInterpret — библиотека в основном построенная на Feature attribution methods, причем многие методы — расширение классических XAI методов с поправкой на временной ряд.

Методы в основном основаны на вычисление важности либо через градиент, либо через маскирование.

3. TSCaptum — библиотека, полностью построенная на адаптации методов из библиотеки Captum под временные ряда и библиотеки для работы с временными рядами, типа aeon toolkit.

Ещё можно отдельно подсмотреть код тут (CAM для Multivariative TS), пример полного XAI-workflow тут, а статьи собраны в этом прекрасном репозитории.

__________________

А ещё вчера с коллегами закинули статью сюда, и это был безумно великолепный опыт подготовки материалов к не университетским конфам!

Даже если будет реджект (но это мы узнаем только в сентябре) — работа дала много новых навыков. И, конечно, бесспорно лучших коллег, потому что сабмиты мы делали в 2 часа ночи по GMT +3, и в час ночи по IST и GMT+2.

Думаю, про это ещё напишу, если вам интересно! Как-то дайте знать)

Отличного вам дня,
Ваш Дата-автор!

BY Data Blog


Share with your friend now:
tgoop.com/jdata_blog/425

View MORE
Open in Telegram


Telegram News

Date: |

Your posting frequency depends on the topic of your channel. If you have a news channel, it’s OK to publish new content every day (or even every hour). For other industries, stick with 2-3 large posts a week. How to create a business channel on Telegram? (Tutorial) Co-founder of NFT renting protocol Rentable World emiliano.eth shared the group Tuesday morning on Twitter, calling out the "degenerate" community, or crypto obsessives that engage in high-risk trading. 3How to create a Telegram channel? As the broader market downturn continues, yelling online has become the crypto trader’s latest coping mechanism after the rise of Goblintown Ethereum NFTs at the end of May and beginning of June, where holders made incoherent groaning sounds and role-played as urine-loving goblin creatures in late-night Twitter Spaces.
from us


Telegram Data Blog
FROM American