JDATA_BLOG Telegram 391
Закон Гутхарта — неожиданная сторона критичности в сторону объяснения моделей.

Привет, друзья! Сегодня прям о вкусном:

когда метрика становится целью, она перестаёт быть хорошей метрикой

Или в оригинале:

any observed statistical regularity will tend to collapse once pressure is placed upon it for control purposes

Именно так звучит закон Гудхарта, пришедший из экономики, чтобы в машинном обучении просто «с ноги» заставить исследователей обратить внимание на метрики. Изначально он появился примерно в такой амплуа:

если государство вводит KPI для измерения успеха, бюрократическая система начинает оптимизировать именно этот KPI, а не реальный результат.

Если это амплуа перенести в машинное обучение, то получается такой сценарий:

если задача обучения модели — оптимизация метрики, то модель может подогнаться под эту метрику вместо реального улучшения качества решения задачи.

Примеров исследований мало. Из игрушечных примеров (и вдогонку — обзор, почему метрика может быть проблемой):

* Переобучение модели в соревновании на оценку лидерборда.
* В результате оптимизации под CTR (click-through rate) можно прийти к показу провокационного (кликбейтного) контента, потому что он вызывает больше реакций, даже если это негативный эффект.

Из реальных, практико-ориентированных и связанных непосредственно с XAI мне удалось найти статью
Goodhart’s Law Applies to NLP’s Explanation Benchmarks.

Тейк статьи: показывают, что эти метрики объяснимости можно искусственно завысить, не улучшая реальную объяснимость модели.

Метод статьи: при помощи метрик — comprehensiveness  (измеряет, насколько ухудшится предсказание модели, если убрать "объясняющие" токены) и sufficiency (оценивает, насколько хорошо модель предсказывает только по выделенным токенам) — показывают, что можно значимо увеличить значения этих метрик, не изменяя сами объяснения и предсказания модели.

Это достигается за счёт того, что удалённые и оставленные токены принадлежат разным распределениям, что приводит к "подгонке" модели под метрику.

Кроме того, с критической точки зрения, можно выдвинуть гипотезу о том, что в случае unlearning’а, модель обучается скорее «скрывать» свое поведение, а не реально избавляется он bias’а. Однако это нельзя однозначно подтвердить и здесь очень важен вопрос о способе отучения.

Таким образом, критическая пища на эти выходные (мне хватило на неделю):

Оценка объяснимости остаётся нерешённой проблемой: существующие метрики можно обмануть и, как следствие, можно измерить определенные показатели, но важно понимать их текущую уязвимость.

Оценку модели, оценку её прозрачности, как и вообще весь процесс разработки, стоит планировать аккуратно. И чем сложнее модель, тем больше зон, которые нужно учитывать. А так всё хорошо начиналось, когда нужно было просто решить задачу MNIST.

Хороших вам выходных, друзья! И множества критических вопросов при оценке моделей!


P.S. Знаю, что обещала вам туториал, но последнее время много учусь и работаю. Делаю интересный проект на учебе, пишу диплом — скоро буду математиком. Плюс подтягиваю навыки, чтобы больше уметь в оценку больших моделей. И чем больше я изучу, тем больше интересного смогу сделать, разобрать и показать)

Всё допишем, оформим, иначе никак 😌


Ваш,
Дата-автор!
❤‍🔥12🌭4👍2



tgoop.com/jdata_blog/391
Create:
Last Update:

Закон Гутхарта — неожиданная сторона критичности в сторону объяснения моделей.

Привет, друзья! Сегодня прям о вкусном:

когда метрика становится целью, она перестаёт быть хорошей метрикой

Или в оригинале:

any observed statistical regularity will tend to collapse once pressure is placed upon it for control purposes

Именно так звучит закон Гудхарта, пришедший из экономики, чтобы в машинном обучении просто «с ноги» заставить исследователей обратить внимание на метрики. Изначально он появился примерно в такой амплуа:

если государство вводит KPI для измерения успеха, бюрократическая система начинает оптимизировать именно этот KPI, а не реальный результат.

Если это амплуа перенести в машинное обучение, то получается такой сценарий:

если задача обучения модели — оптимизация метрики, то модель может подогнаться под эту метрику вместо реального улучшения качества решения задачи.

Примеров исследований мало. Из игрушечных примеров (и вдогонку — обзор, почему метрика может быть проблемой):

* Переобучение модели в соревновании на оценку лидерборда.
* В результате оптимизации под CTR (click-through rate) можно прийти к показу провокационного (кликбейтного) контента, потому что он вызывает больше реакций, даже если это негативный эффект.

Из реальных, практико-ориентированных и связанных непосредственно с XAI мне удалось найти статью
Goodhart’s Law Applies to NLP’s Explanation Benchmarks.

Тейк статьи: показывают, что эти метрики объяснимости можно искусственно завысить, не улучшая реальную объяснимость модели.

Метод статьи: при помощи метрик — comprehensiveness  (измеряет, насколько ухудшится предсказание модели, если убрать "объясняющие" токены) и sufficiency (оценивает, насколько хорошо модель предсказывает только по выделенным токенам) — показывают, что можно значимо увеличить значения этих метрик, не изменяя сами объяснения и предсказания модели.

Это достигается за счёт того, что удалённые и оставленные токены принадлежат разным распределениям, что приводит к "подгонке" модели под метрику.

Кроме того, с критической точки зрения, можно выдвинуть гипотезу о том, что в случае unlearning’а, модель обучается скорее «скрывать» свое поведение, а не реально избавляется он bias’а. Однако это нельзя однозначно подтвердить и здесь очень важен вопрос о способе отучения.

Таким образом, критическая пища на эти выходные (мне хватило на неделю):

Оценка объяснимости остаётся нерешённой проблемой: существующие метрики можно обмануть и, как следствие, можно измерить определенные показатели, но важно понимать их текущую уязвимость.

Оценку модели, оценку её прозрачности, как и вообще весь процесс разработки, стоит планировать аккуратно. И чем сложнее модель, тем больше зон, которые нужно учитывать. А так всё хорошо начиналось, когда нужно было просто решить задачу MNIST.

Хороших вам выходных, друзья! И множества критических вопросов при оценке моделей!


P.S. Знаю, что обещала вам туториал, но последнее время много учусь и работаю. Делаю интересный проект на учебе, пишу диплом — скоро буду математиком. Плюс подтягиваю навыки, чтобы больше уметь в оценку больших моделей. И чем больше я изучу, тем больше интересного смогу сделать, разобрать и показать)

Всё допишем, оформим, иначе никак 😌


Ваш,
Дата-автор!

BY Data Blog


Share with your friend now:
tgoop.com/jdata_blog/391

View MORE
Open in Telegram


Telegram News

Date: |

Telegram users themselves will be able to flag and report potentially false content. Matt Hussey, editorial director of NEAR Protocol (and former editor-in-chief of Decrypt) responded to the news of the Telegram group with “#meIRL.” For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data. In handing down the sentence yesterday, deputy judge Peter Hui Shiu-keung of the district court said that even if Ng did not post the messages, he cannot shirk responsibility as the owner and administrator of such a big group for allowing these messages that incite illegal behaviors to exist. ‘Ban’ on Telegram
from us


Telegram Data Blog
FROM American