tgoop.com/javaproglib/7036
Create:
Last Update:
Last Update:
Производительность enterprise-систем часто упирается в кэширование. Но один только Redis — не всегда оптимально: сетевые вызовы вносят задержки, а локальные кэши не делятся данными между инстансами. Решение — связка in-memory и распределённого кэша.
📝 Промпт:
Generate a Spring Boot 3 configuration with multi-level caching (L1 + L2).
— Integrate Caffeine as in-memory (L1) cache for ultra-fast lookups.
— Integrate Redis as distributed (L2) cache for cross-instance consistency.
— Configure CacheManager that combines Caffeine (short-lived) and Redis (longer TTL) transparently.
— Implement annotation-based caching with @Cacheable, @CachePut, and @CacheEvict.
— Add fallback to DB if both caches miss, with metrics for hit/miss ratios.
— Ensure proper serialization (Jackson or Kryo) for complex entities in Redis.
— Provide cache invalidation strategies (per entity, per tenant, global).
— Добавьте Near-cache pattern для высоконагруженных сервисов.
— Интегрируйте с Spring Data Redis Streams для event-driven invalidation.
— Настройте Prometheus + Grafana dashboards для мониторинга кэш-слоя.
#Enterprise