tgoop.com/hse_cs_opensource/62
Create:
Last Update:
Last Update:
tabgraphs
Бенчмарк для обучения на графах для табличных данных с гетерогенными признаками-вершинами. Авторы оценивают большое количество моделей, включая стандартные бейзлайны и нейросетевые модели для графовых и табличных задач. В экспериментальной части исследователи показывают, что несколько ранее упускаемых из виду модификаций моделей, таких как аугментация признаков-вершин на основе соседства графа для графонезависимых табличных моделей или числовые эмебддинги признаков для GNN, позволяют достичь наилучшей производительности на таких данных. Работа может быть полезна DS-специалистам, а так же ML-исследователям, фокусирующимся на табличных данных или графовых моделях.
статья | код
BY Открытый код ФКН ВШЭ

Share with your friend now:
tgoop.com/hse_cs_opensource/62