HSE_CS_OPENSOURCE Telegram 31
Forwarded from Научный опенсорс (Nikolay Nikitin)
Приветствую всех!

Некоторое время назад мы опубликовали статью под названием «Open Source в российском ИИ: исследование ландшафта», в которой проанализировали, кто и как занимается опенсорсом в научной сфере, а также предложили некоторые критерии для сравнения опенсорсных экосистем. Однако этот материал охватывает лишь один из множества аспектов создания и применения открытых решений.

В нашем следующем исследовании мы решили расширить рамки и рассмотреть вопрос используемости открытых инструментов в знакомых нам областях ИИ, машинного обучения, Data Science и работы с данными в целом. Сегодня мы завершили работу над этим материалом и рады представить его публике.

Исследование называется «Использование ML/Data-опенсорса в России» и доступно по ссылке — https://opensource.itmo.ru

На этот раз оно оформлено в виде красочного лендинга, с созданием которого нам помогли пресс-служба и управление интернет-ресурсов ИТМО. В подготовке участвовали сотрудники исследовательского центра «Сильный ИИ в промышленности», студенты и аспиранты ИТМО.

Первая часть исследования содержит краткое изложение целей, методологии и основных результатов. Мы поговорили с несколькими экспертами из различных компаний и университетов ― Яндекса, Сбера, Т-Банка, VK, Wildberries, Рокет Контрола, CodeScoring, МФТИ. Кроме того, мы собрали открытые данные и на их основе выделили наиболее активно используемые опенсорсные проекты, а также компании, активно участвующие в опенсорс-инициативах.

Далее вы сможете погрузиться в технические детали. Мы реализовали парсер данных из GitHub API и сторонних сервисов (таких, как pepy, star-history и др.), на основе которых проанализировали геоданные пользователей, использующих открытые проекты и участвующих в их развитии. Также уделили внимание существующим опенсорс-сообществам, другим исследованиям на схожие темы, перспективам развития опенсорса в эпоху ИИ и многому другому. Надеемся, что будет полезно и интересно.

Читайте, комментируйте, оставляйте обратную связь прямо в чате. Весь фидбэк используем для подготовки следующей версии исследования.
👍9🐳1



tgoop.com/hse_cs_opensource/31
Create:
Last Update:

Приветствую всех!

Некоторое время назад мы опубликовали статью под названием «Open Source в российском ИИ: исследование ландшафта», в которой проанализировали, кто и как занимается опенсорсом в научной сфере, а также предложили некоторые критерии для сравнения опенсорсных экосистем. Однако этот материал охватывает лишь один из множества аспектов создания и применения открытых решений.

В нашем следующем исследовании мы решили расширить рамки и рассмотреть вопрос используемости открытых инструментов в знакомых нам областях ИИ, машинного обучения, Data Science и работы с данными в целом. Сегодня мы завершили работу над этим материалом и рады представить его публике.

Исследование называется «Использование ML/Data-опенсорса в России» и доступно по ссылке — https://opensource.itmo.ru

На этот раз оно оформлено в виде красочного лендинга, с созданием которого нам помогли пресс-служба и управление интернет-ресурсов ИТМО. В подготовке участвовали сотрудники исследовательского центра «Сильный ИИ в промышленности», студенты и аспиранты ИТМО.

Первая часть исследования содержит краткое изложение целей, методологии и основных результатов. Мы поговорили с несколькими экспертами из различных компаний и университетов ― Яндекса, Сбера, Т-Банка, VK, Wildberries, Рокет Контрола, CodeScoring, МФТИ. Кроме того, мы собрали открытые данные и на их основе выделили наиболее активно используемые опенсорсные проекты, а также компании, активно участвующие в опенсорс-инициативах.

Далее вы сможете погрузиться в технические детали. Мы реализовали парсер данных из GitHub API и сторонних сервисов (таких, как pepy, star-history и др.), на основе которых проанализировали геоданные пользователей, использующих открытые проекты и участвующих в их развитии. Также уделили внимание существующим опенсорс-сообществам, другим исследованиям на схожие темы, перспективам развития опенсорса в эпоху ИИ и многому другому. Надеемся, что будет полезно и интересно.

Читайте, комментируйте, оставляйте обратную связь прямо в чате. Весь фидбэк используем для подготовки следующей версии исследования.

BY Открытый код ФКН ВШЭ




Share with your friend now:
tgoop.com/hse_cs_opensource/31

View MORE
Open in Telegram


Telegram News

Date: |

4How to customize a Telegram channel? Commenting about the court's concerns about the spread of false information related to the elections, Minister Fachin noted Brazil is "facing circumstances that could put Brazil's democracy at risk." During the meeting, the information technology secretary at the TSE, Julio Valente, put forward a list of requests the court believes will disinformation. How to Create a Private or Public Channel on Telegram? Clear Invite up to 200 users from your contacts to join your channel
from us


Telegram Открытый код ФКН ВШЭ
FROM American