Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/explaining_space/-35-36-37-): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
Объясняем просто: космос@explaining_space P.37
EXPLAINING_SPACE Telegram 37
В прошлый раз мы говорили о размере орбиты. Сегодня мы перейдем к обсуждению формы орбиты и первый раз затронем ситуацию, когда орбита перестает быть замкнутой.

Замкнутая орбита имеет форму эллипса, в частности, окружности. Форму эллипса можно характеризовать через соотношение его большой и малой полуоси: чем первая больше другой, тем более вытянут эллипс. Когда они совпадают, эллипс совпадает с окружностью, а большая полуось – с радиусом окружности.

Но есть куда более удобная возможность оценить форму орбиты: математика позволяет вывести из уравнения движения тела в центральном поле параметр, который называется эксцентриситет (обозначается латинской буквой «e»).

Это величина, которая может принимать значения от нуля до бесконечности и показывает, насколько форма орбиты отличается от окружности:

Если эксцентриситет равен нулю (e = 0), то орбита – окружность
Если эксцентриситет больше нуля и меньше единицы (0 < e < 1) – это все более и более вытянутый эллипс ❷.

Если апоцентр эллиптической орбиты выходит за пределы сферы Хилла*, то уже нельзя говорить о том, что орбита остается замкнутой. Это соответствует моменту, когда эксцентриситет становится больше или равен единице:

Если эксцентриситет достиг значения 1 (e = 1) – то орбита перестала быть замкнутой и имеет форму параболы
Если эксцентриситет больше 1 (e > 1) – орбита стала гиперболой ❸ (и чем больше эксцентриситет, тем более разомкнуты ветви гиперболы, в пределе стремясь стать прямой).

И для параболы, и для гиперболы значение большой полуоси будет отрицательным, а радиус апоцентра – равным бесконечности, и говорить об их размере затруднительно.

Все перечисленные формы орбит являются коническими сечениями. В реальном мире невозможно найти ситуацию, когда объект движется точно по траекториям, которые можно описать такими идеальными орбитами, но они подходят, как начальное приближение или оценка траектории на короткое время (оскулирующая орбита).

* - при старте с поверхности этому соответствует набор второй космической скорости.

#орбитальнаямеханика
👍216🔥5🤯4🥰1



tgoop.com/explaining_space/37
Create:
Last Update:

В прошлый раз мы говорили о размере орбиты. Сегодня мы перейдем к обсуждению формы орбиты и первый раз затронем ситуацию, когда орбита перестает быть замкнутой.

Замкнутая орбита имеет форму эллипса, в частности, окружности. Форму эллипса можно характеризовать через соотношение его большой и малой полуоси: чем первая больше другой, тем более вытянут эллипс. Когда они совпадают, эллипс совпадает с окружностью, а большая полуось – с радиусом окружности.

Но есть куда более удобная возможность оценить форму орбиты: математика позволяет вывести из уравнения движения тела в центральном поле параметр, который называется эксцентриситет (обозначается латинской буквой «e»).

Это величина, которая может принимать значения от нуля до бесконечности и показывает, насколько форма орбиты отличается от окружности:

Если эксцентриситет равен нулю (e = 0), то орбита – окружность
Если эксцентриситет больше нуля и меньше единицы (0 < e < 1) – это все более и более вытянутый эллипс ❷.

Если апоцентр эллиптической орбиты выходит за пределы сферы Хилла*, то уже нельзя говорить о том, что орбита остается замкнутой. Это соответствует моменту, когда эксцентриситет становится больше или равен единице:

Если эксцентриситет достиг значения 1 (e = 1) – то орбита перестала быть замкнутой и имеет форму параболы
Если эксцентриситет больше 1 (e > 1) – орбита стала гиперболой ❸ (и чем больше эксцентриситет, тем более разомкнуты ветви гиперболы, в пределе стремясь стать прямой).

И для параболы, и для гиперболы значение большой полуоси будет отрицательным, а радиус апоцентра – равным бесконечности, и говорить об их размере затруднительно.

Все перечисленные формы орбит являются коническими сечениями. В реальном мире невозможно найти ситуацию, когда объект движется точно по траекториям, которые можно описать такими идеальными орбитами, но они подходят, как начальное приближение или оценка траектории на короткое время (оскулирующая орбита).

* - при старте с поверхности этому соответствует набор второй космической скорости.

#орбитальнаямеханика

BY Объясняем просто: космос






Share with your friend now:
tgoop.com/explaining_space/37

View MORE
Open in Telegram


Telegram News

Date: |

To view your bio, click the Menu icon and select “View channel info.” In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013. Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months. Concise How to create a business channel on Telegram? (Tutorial)
from us


Telegram Объясняем просто: космос
FROM American