EBOUTDATASCIENCE Telegram 87
Собес в Тинькофф на зп от 250к на DS NLP 🙌

Там три собеса: базовый мл, нлп часть и разговор с командой. Проходил собес на базовый ML, было дефолтненько, но всё равно интересно 👀

1️⃣ Какие метрики классификации бывают? Распиши формулу Precision, Recall, F1, F1-weighted. Всегда ли 2 встречается в формуле F1? Почему F1 выглядит именно так, почему не среднее между Recall и Precision ? Расскажи про макро/микро усреднение, расскажи про One-vs-All и про One-vs-One?
- База про метрики: видос, habr, medium про One-vs-All, One-vs-One
- Формула F1 - это среднее гармоническое, данная формула подразумевает, что мы отдаём предпочтениее как и Recall, так и Precision. А вот если бы мы взяли среднее, то может возникнуть такая ситуация, где Recall = 0.9, а Precision = 0.1, а среднее от них 0.5, а мы стараемся избежать дисбаланс метрик, поэтому и используем среднее гармоническое 🤥


2️⃣ Вот тебе данные (1 картинка в комментариях), посчитай мне ROC-AUC, Precision, Recall.
- Но тут на технику тупо 🦾

3️⃣ Дана такая картинка (2 картинка в комментариях), покажи как будет выглядит график на test data таких алгоритмов как: линейная регрессия, решающие дерево и knn.
Смотрите на 3 картинку в коммментариях
- линейная регрессия показана оранжевым цветов. Она выглядит так, так как это просто линейная функция
- дерево показано фиолетовой линией. Так как решающее дерево - это кусочно-постоянная приближение, поэтому она выглядит на графике из вертикальных и горизонтальных линий, и так как для самого "высокого" Y она сделает "самую высокую" горизонтальную линию, следовательно для X из тестовового датасета она даст предсказание по "самой высокой" линии - старался объяснить понятным языком 🤡
- KNN будет выглядеть как прямая линия, которая берёт своё начало от самого дальнего объекта из train data. Так как KNN ищет ближайшего соседа к X_test, а самый ближайший сосед для неё - это "самый правый" из train data - опять старался объяснить понятным языком 🤡

4️⃣ Если в нейронных сетях поменять функцию активации на функцию, которая возвращает X, то сколько слоёв потребуется, чтобы аппроксимировать полином ?
- Так как функция активации возвращает X, то при умножении матриц нейронки, вся нейронка будет состоять сугубо из линейных преобразований, а значит нейронка = линейная функция. Поэтому у нас никак не получится аппроксимировать полином, так как мы пытаемся аппроксимировать полиномлинейной функцией - а это невозможно

5️⃣ Расскажи про токенизацию, виды токенайзеров, n-gramms, лемматизацию, стемминг, очистку данных, распиши формулу TF-IDF.
- Тут сугубо формулы и базовые определения, вся инфа есть в инете 🌐

Итог 👌
Собес кайф, выебали по базе, дальше только секция NLP.
Тинькофф советую, хоть я и работаю в Сбере, но бесплатные столовки никто не отменял.
Чат для вопросов и рассуждений всегда открыт, я не гений, могу сам где-то ошибиться 🤓
🍌95🍓5🤔3😱2💅2👍1



tgoop.com/eboutdatascience/87
Create:
Last Update:

Собес в Тинькофф на зп от 250к на DS NLP 🙌

Там три собеса: базовый мл, нлп часть и разговор с командой. Проходил собес на базовый ML, было дефолтненько, но всё равно интересно 👀

1️⃣ Какие метрики классификации бывают? Распиши формулу Precision, Recall, F1, F1-weighted. Всегда ли 2 встречается в формуле F1? Почему F1 выглядит именно так, почему не среднее между Recall и Precision ? Расскажи про макро/микро усреднение, расскажи про One-vs-All и про One-vs-One?
- База про метрики: видос, habr, medium про One-vs-All, One-vs-One
- Формула F1 - это среднее гармоническое, данная формула подразумевает, что мы отдаём предпочтениее как и Recall, так и Precision. А вот если бы мы взяли среднее, то может возникнуть такая ситуация, где Recall = 0.9, а Precision = 0.1, а среднее от них 0.5, а мы стараемся избежать дисбаланс метрик, поэтому и используем среднее гармоническое 🤥


2️⃣ Вот тебе данные (1 картинка в комментариях), посчитай мне ROC-AUC, Precision, Recall.
- Но тут на технику тупо 🦾

3️⃣ Дана такая картинка (2 картинка в комментариях), покажи как будет выглядит график на test data таких алгоритмов как: линейная регрессия, решающие дерево и knn.
Смотрите на 3 картинку в коммментариях
- линейная регрессия показана оранжевым цветов. Она выглядит так, так как это просто линейная функция
- дерево показано фиолетовой линией. Так как решающее дерево - это кусочно-постоянная приближение, поэтому она выглядит на графике из вертикальных и горизонтальных линий, и так как для самого "высокого" Y она сделает "самую высокую" горизонтальную линию, следовательно для X из тестовового датасета она даст предсказание по "самой высокой" линии - старался объяснить понятным языком 🤡
- KNN будет выглядеть как прямая линия, которая берёт своё начало от самого дальнего объекта из train data. Так как KNN ищет ближайшего соседа к X_test, а самый ближайший сосед для неё - это "самый правый" из train data - опять старался объяснить понятным языком 🤡

4️⃣ Если в нейронных сетях поменять функцию активации на функцию, которая возвращает X, то сколько слоёв потребуется, чтобы аппроксимировать полином ?
- Так как функция активации возвращает X, то при умножении матриц нейронки, вся нейронка будет состоять сугубо из линейных преобразований, а значит нейронка = линейная функция. Поэтому у нас никак не получится аппроксимировать полином, так как мы пытаемся аппроксимировать полиномлинейной функцией - а это невозможно

5️⃣ Расскажи про токенизацию, виды токенайзеров, n-gramms, лемматизацию, стемминг, очистку данных, распиши формулу TF-IDF.
- Тут сугубо формулы и базовые определения, вся инфа есть в инете 🌐

Итог 👌
Собес кайф, выебали по базе, дальше только секция NLP.
Тинькофф советую, хоть я и работаю в Сбере, но бесплатные столовки никто не отменял.
Чат для вопросов и рассуждений всегда открыт, я не гений, могу сам где-то ошибиться 🤓

BY Ebout Data Science | Дима Савелко


Share with your friend now:
tgoop.com/eboutdatascience/87

View MORE
Open in Telegram


Telegram News

Date: |

In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013. Today, we will address Telegram channels and how to use them for maximum benefit. Ng Man-ho, a 27-year-old computer technician, was convicted last month of seven counts of incitement charges after he made use of the 100,000-member Chinese-language channel that he runs and manages to post "seditious messages," which had been shut down since August 2020. Avoid compound hashtags that consist of several words. If you have a hashtag like #marketingnewsinusa, split it into smaller hashtags: “#marketing, #news, #usa. Hui said the time period and nature of some offences “overlapped” and thus their prison terms could be served concurrently. The judge ordered Ng to be jailed for a total of six years and six months.
from us


Telegram Ebout Data Science | Дима Савелко
FROM American