EBOUTDATASCIENCE Telegram 256
SGR - Ликвидация галлюцинаций в LLM

Надоело, что LLM-ка на один и тот же запрос выдаёт то стихи, то рецепт борща, то вообще уходит в астрал? Ловит постоянно галлюны и никакого структурированного ответа, как будто обожралась грибов с Бали? 🤪

Но есть решение, которое уже набирает обороты и становится must have — SGR (Schema Guided Reasoning). Это подход, который превращает LLM из капризного «чёрного ящика» под грибами в управляемый и предсказуемый инструмент.

Как это работает?
SGR заставляет модель рассуждать по заранее определённым схемам. Вместо того чтобы дать ей полную свободу творчества, мы даём ей чёткий чертёж, по которому она должна построить свой ответ. Это жёстко снижает количество галлюцинаций и повышает предсказуемость 👋

На практике: вместо того чтобы просто попросить LLM «по-братски проанализировать документ», мы даем ей строгую схему, которая заставляет её выполнить последовательный и логичный мыслительный процесс:

1️⃣ Проверь применимость.
2️⃣ Дай чёткий ответ: Да/Нет.
3️⃣ Если «Нет» — выбери причину из списка и оцени, насколько всё плохо.
4️⃣ Покажи пальцем на косяки в тексте и предложи, как их исправить.

Вся магия работает через Structured Output (SO) с помощью JSON Schema. Если не душить терминами, то мы просто описываем чёткую структуру, которую хотим получить на выходе из каждого этапа 🤭

Простейший пример на Pydantic смотри на 1 картинке.
Дальше мы просто говорим модели: «Твой ответ должен соответствовать схеме ComplianceAnalysis, или я умру». И на выходе получаем чистенький, структурированный JSON, с которым уже можно нормально работать.

Базовые паттерны SGR 😎
Для практического применения удобно использовать несколько базовых паттернов:
🟣Cascade. Линейная последовательность шагов рассуждения. Подходит для
задач, где важен чёткий порядок действий (например, создание отчета).

🟡Routing. Ветвление. Модель выбирает подходящий путь рассуждения в
зависимости от условий.

🔵Cycle. Циклический процесс. Используется для итеративной работы, Например,
через этот паттерн можно реализовать ReAct-агента, где повторяются шаги
«Reasoning → Action».

Итог 🦆
SGR — это мощный инструмент, который превращает LLM из «творческого» генератора текста в надёжный и предсказуемый инструмент для анализа, чей процесс принятия решений прозрачен и легко проверяется. Короче, это мощный инструмент, который заставляет LLM работать по твоим правилам, а не генерировать рандомный грибной бред.

Почитать подробнее можно здесь, а про паттерны здесь
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
20👍15🔥8🍌5🥰1🆒1



tgoop.com/eboutdatascience/256
Create:
Last Update:

SGR - Ликвидация галлюцинаций в LLM

Надоело, что LLM-ка на один и тот же запрос выдаёт то стихи, то рецепт борща, то вообще уходит в астрал? Ловит постоянно галлюны и никакого структурированного ответа, как будто обожралась грибов с Бали? 🤪

Но есть решение, которое уже набирает обороты и становится must have — SGR (Schema Guided Reasoning). Это подход, который превращает LLM из капризного «чёрного ящика» под грибами в управляемый и предсказуемый инструмент.

Как это работает?
SGR заставляет модель рассуждать по заранее определённым схемам. Вместо того чтобы дать ей полную свободу творчества, мы даём ей чёткий чертёж, по которому она должна построить свой ответ. Это жёстко снижает количество галлюцинаций и повышает предсказуемость 👋

На практике: вместо того чтобы просто попросить LLM «по-братски проанализировать документ», мы даем ей строгую схему, которая заставляет её выполнить последовательный и логичный мыслительный процесс:

1️⃣ Проверь применимость.
2️⃣ Дай чёткий ответ: Да/Нет.
3️⃣ Если «Нет» — выбери причину из списка и оцени, насколько всё плохо.
4️⃣ Покажи пальцем на косяки в тексте и предложи, как их исправить.

Вся магия работает через Structured Output (SO) с помощью JSON Schema. Если не душить терминами, то мы просто описываем чёткую структуру, которую хотим получить на выходе из каждого этапа 🤭

Простейший пример на Pydantic смотри на 1 картинке.
Дальше мы просто говорим модели: «Твой ответ должен соответствовать схеме ComplianceAnalysis, или я умру». И на выходе получаем чистенький, структурированный JSON, с которым уже можно нормально работать.

Базовые паттерны SGR 😎
Для практического применения удобно использовать несколько базовых паттернов:
🟣Cascade. Линейная последовательность шагов рассуждения. Подходит для
задач, где важен чёткий порядок действий (например, создание отчета).

🟡Routing. Ветвление. Модель выбирает подходящий путь рассуждения в
зависимости от условий.

🔵Cycle. Циклический процесс. Используется для итеративной работы, Например,
через этот паттерн можно реализовать ReAct-агента, где повторяются шаги
«Reasoning → Action».

Итог 🦆
SGR — это мощный инструмент, который превращает LLM из «творческого» генератора текста в надёжный и предсказуемый инструмент для анализа, чей процесс принятия решений прозрачен и легко проверяется. Короче, это мощный инструмент, который заставляет LLM работать по твоим правилам, а не генерировать рандомный грибной бред.

Почитать подробнее можно здесь, а про паттерны здесь

BY Ebout Data Science | Дима Савелко





Share with your friend now:
tgoop.com/eboutdatascience/256

View MORE
Open in Telegram


Telegram News

Date: |

Developing social channels based on exchanging a single message isn’t exactly new, of course. Back in 2014, the “Yo” app was launched with the sole purpose of enabling users to send each other the greeting “Yo.” Today, we will address Telegram channels and how to use them for maximum benefit. How to create a business channel on Telegram? (Tutorial) In handing down the sentence yesterday, deputy judge Peter Hui Shiu-keung of the district court said that even if Ng did not post the messages, he cannot shirk responsibility as the owner and administrator of such a big group for allowing these messages that incite illegal behaviors to exist. Your posting frequency depends on the topic of your channel. If you have a news channel, it’s OK to publish new content every day (or even every hour). For other industries, stick with 2-3 large posts a week.
from us


Telegram Ebout Data Science | Дима Савелко
FROM American