EBOUTDATASCIENCE Telegram 198
Уничтожили градиентный спуск и линейную регрессию, а теперь пора уничтожать регуляризацию

Мы продолжаем разбирать Classic ML в рамках наших онлайн-занятий, где важен индивидуальный подход к каждому ученику 😘

Чем мы отличаемся от курсов?
Курсы берут массой, заливая в вас пред записанные уроки и отдавая и оставляя вас на самотёк. Мы проводим живые занятия в небольших группах (до 30 человек), где у вас есть возможность общаться с преподавателем на протяжении всего обучения 👨‍🦰

Отзывы учеников (картинки 1-2):
Реализация на питоне с нуля - самое полезное. Ещё примеры были хорошие

Разбор как теории, так и практики. На каждую задачу приводили понятный пример, а еще можно было сразу спрашивать, если что то непонятно

В курсе мне очень понравился анонс - когда предлагается последовательное прохождение от простого к сложному в качестве практики сразу делая реальные примеры с кагла.


Прошлый урок прошёл просто на ура, мы разобрали (картинки 3-5)🗣
🟣 Линейную регрессию
🟡 Loss: МНК, Требования, Графики
🔵 Методы оптимизации наилучшие веса: - Аналитическое решение, Градиентный спуск (GD), Стохастический градиентный спуск (SGD)
🟢 Сравнили сложности алгоритмов
🟣 Посчитали метрики качества
🟡 И на практике реализовали градиентный спуск, сделали аналитическое решение

А в качестве практики мы в онлайне реализовали:
🔜 градиентный спуск для y = x**2 - 3*x + 1
🔜 аналитическое решение задачи регрессии

Не забыли про ДЗ:
➡️ Мы дали теоретический тест на закрепление базы
🔜 Ребята реализовали класс линейной регрессии, а мы их проверили

Что вас ждёт на следующем уроке 🍑
🔘 Переобучение, не дообучение, проблемы с данными
🔘 Регуляризация (L1, L2, ElasticNet)
🔘 Сравнение методов и их влияние на модель

На практике мы реализуем пару методов регуляризации, чтобы твёрдо и чётко понимать, как она работает, а в ДЗ вы попробуете реализовать оставшиеся методы регуляризации и потренировать свою модель на реальных данных, а также расскажем, как это работает в scikit-learn!

Занятие будет проходить 20 февраля с 19:00 - 20:00, будет запись, и время две недели на решение ДЗ и его проверку преподавателем 🍺

Первое занятие было бесплатное, и мы набрали 29 учеников. Уже занимаются места на второе занятие, которое стоит 1000 рублей.
Я специально ставлю цену по занятиям, чтобы вы за небольшую сумму смогли посмотреть на качество лекций и покинуть обучение, если вам не понравилось, ну и продолжить, если всё хорошо! Многие курсы ставят ценник в 100к, не давая ученику глянуть на качество материала, мы же решили эту проблему - всё для вас)

Если хотите записаться на вторую лекцию по регуляризации и линейной регрессии, то пишите @Alexander_Isaev1
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥8❤‍🔥4🍌42🥰2👍1👎1



tgoop.com/eboutdatascience/198
Create:
Last Update:

Уничтожили градиентный спуск и линейную регрессию, а теперь пора уничтожать регуляризацию

Мы продолжаем разбирать Classic ML в рамках наших онлайн-занятий, где важен индивидуальный подход к каждому ученику 😘

Чем мы отличаемся от курсов?
Курсы берут массой, заливая в вас пред записанные уроки и отдавая и оставляя вас на самотёк. Мы проводим живые занятия в небольших группах (до 30 человек), где у вас есть возможность общаться с преподавателем на протяжении всего обучения 👨‍🦰

Отзывы учеников (картинки 1-2):

Реализация на питоне с нуля - самое полезное. Ещё примеры были хорошие

Разбор как теории, так и практики. На каждую задачу приводили понятный пример, а еще можно было сразу спрашивать, если что то непонятно

В курсе мне очень понравился анонс - когда предлагается последовательное прохождение от простого к сложному в качестве практики сразу делая реальные примеры с кагла.


Прошлый урок прошёл просто на ура, мы разобрали (картинки 3-5)🗣
🟣 Линейную регрессию
🟡 Loss: МНК, Требования, Графики
🔵 Методы оптимизации наилучшие веса: - Аналитическое решение, Градиентный спуск (GD), Стохастический градиентный спуск (SGD)
🟢 Сравнили сложности алгоритмов
🟣 Посчитали метрики качества
🟡 И на практике реализовали градиентный спуск, сделали аналитическое решение

А в качестве практики мы в онлайне реализовали:
🔜 градиентный спуск для y = x**2 - 3*x + 1
🔜 аналитическое решение задачи регрессии

Не забыли про ДЗ:
➡️ Мы дали теоретический тест на закрепление базы
🔜 Ребята реализовали класс линейной регрессии, а мы их проверили

Что вас ждёт на следующем уроке 🍑
🔘 Переобучение, не дообучение, проблемы с данными
🔘 Регуляризация (L1, L2, ElasticNet)
🔘 Сравнение методов и их влияние на модель

На практике мы реализуем пару методов регуляризации, чтобы твёрдо и чётко понимать, как она работает, а в ДЗ вы попробуете реализовать оставшиеся методы регуляризации и потренировать свою модель на реальных данных, а также расскажем, как это работает в scikit-learn!

Занятие будет проходить 20 февраля с 19:00 - 20:00, будет запись, и время две недели на решение ДЗ и его проверку преподавателем 🍺

Первое занятие было бесплатное, и мы набрали 29 учеников. Уже занимаются места на второе занятие, которое стоит 1000 рублей.
Я специально ставлю цену по занятиям, чтобы вы за небольшую сумму смогли посмотреть на качество лекций и покинуть обучение, если вам не понравилось, ну и продолжить, если всё хорошо! Многие курсы ставят ценник в 100к, не давая ученику глянуть на качество материала, мы же решили эту проблему - всё для вас)

Если хотите записаться на вторую лекцию по регуляризации и линейной регрессии, то пишите @Alexander_Isaev1

BY Ebout Data Science | Дима Савелко








Share with your friend now:
tgoop.com/eboutdatascience/198

View MORE
Open in Telegram


Telegram News

Date: |

How to Create a Private or Public Channel on Telegram? The creator of the channel becomes its administrator by default. If you need help managing your channel, you can add more administrators from your subscriber base. You can provide each admin with limited or full rights to manage the channel. For example, you can allow an administrator to publish and edit content while withholding the right to add new subscribers. Select “New Channel” Click “Save” ; Private channels are only accessible to subscribers and don’t appear in public searches. To join a private channel, you need to receive a link from the owner (administrator). A private channel is an excellent solution for companies and teams. You can also use this type of channel to write down personal notes, reflections, etc. By the way, you can make your private channel public at any moment.
from us


Telegram Ebout Data Science | Дима Савелко
FROM American