Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/eboutdatascience/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
Ebout Data Science | Дима Савелко@eboutdatascience P.177
EBOUTDATASCIENCE Telegram 177
Вопросы, которые вам обязательно зададут на типичном собесе по ClassicML ч1

Все вопросы вы можете посмотреть в моём личном сборнике вопросов, там также есть вопросы не только по ClassicML, но и по NLP, CV и вопросы с компаний)

*️⃣Что такое линейная регрессия ?
Линейная регрессия — это метод прогнозирования, который ищет линейную зависимость между зависимой переменной y и независимыми переменными x. Модель описывается уравнением: y = w*x + b, где w - веса модели, а b - смещение.


*️⃣Как обучается линейная регрессия?
Обучение заключается в подборе коэффициентов w, b, минимизируя функцию потерь, например, среднеквадратичную ошибку (MSE). Методы оптимизации: градиентный спуск или аналитическое решение через нормальное уравнение.


*️⃣Какие плюсы и минусы линейной регрессии ?
Плюсы: может в тенденцию, интерпретируемость, быстрое обучение
Минусы: не работает с нелинейными зависимостями, чувствительна к выбросам


*️⃣Что такое переобучение? Как его обнаружить?
Переобучение — это ситуация, когда модель слишком хорошо подстраивается под обучающие данные, теряя способность обобщать на новые данные. Есть вероятность переобучения, если высокая точность на трейне, и низкая не тесте, а также сильно расходятся кривые обучения.


*️⃣Что такое регуляризация ? Какие виды её бывают, и чем они отличаются? Можешь ли графически интерпиртировать регуляризацию? Почему она помогает бороться с переобучением?
Картинка 1, 2
Регуляризация — это метод добавления штрафа в функцию потерь для уменьшения сложности модели.
L1-регуляризация (Lasso): добавляет штраф на сумму модулей коэффициентов.
L2-регуляризация (Ridge): добавляет штраф на сумму квадратов коэффициентов.
Графическая интерпретация:
L1-регуляризация (Lasso): штраф создает ромбовидный контур ограничений. Это приводит к тому, что веса некоторых признаков могут становиться равными нулю, делая модель разреженной.
L2-регуляризация (Ridge): штраф формирует круговые контуры ограничений. Это приводит к тому, что веса уменьшаются равномерно, сохраняя все признаки в модели, но снижая их вклад.
Почему помогает: Уменьшает влияние нерелевантных признаков и сложных моделей.


*️⃣Какие методы борьбы с переобучением?
- Регуляризация (L1, L2).
- Уменьшение сложности модели путём отбора фичей
- Добавление больше чистых данных.
- Кросс-валидация.


*️⃣Что такое Cross-Validation? TimeSeries-Cross-Validation?
Картинка 3, 4
Кросс-валидация (CV) — метод оценки качества модели через разбиение данных на тренировочные и валидационные наборы (например, K-Fold).
TimeSeries-CV: используется для временных рядов, учитывает временную зависимость. Пример: sliding window или expanding window.
Please open Telegram to view this post
VIEW IN TELEGRAM
🍌13❤‍🔥9👍2🔥21



tgoop.com/eboutdatascience/177
Create:
Last Update:

Вопросы, которые вам обязательно зададут на типичном собесе по ClassicML ч1

Все вопросы вы можете посмотреть в моём личном сборнике вопросов, там также есть вопросы не только по ClassicML, но и по NLP, CV и вопросы с компаний)

*️⃣Что такое линейная регрессия ?

Линейная регрессия — это метод прогнозирования, который ищет линейную зависимость между зависимой переменной y и независимыми переменными x. Модель описывается уравнением: y = w*x + b, где w - веса модели, а b - смещение.


*️⃣Как обучается линейная регрессия?
Обучение заключается в подборе коэффициентов w, b, минимизируя функцию потерь, например, среднеквадратичную ошибку (MSE). Методы оптимизации: градиентный спуск или аналитическое решение через нормальное уравнение.


*️⃣Какие плюсы и минусы линейной регрессии ?
Плюсы: может в тенденцию, интерпретируемость, быстрое обучение
Минусы: не работает с нелинейными зависимостями, чувствительна к выбросам


*️⃣Что такое переобучение? Как его обнаружить?
Переобучение — это ситуация, когда модель слишком хорошо подстраивается под обучающие данные, теряя способность обобщать на новые данные. Есть вероятность переобучения, если высокая точность на трейне, и низкая не тесте, а также сильно расходятся кривые обучения.


*️⃣Что такое регуляризация ? Какие виды её бывают, и чем они отличаются? Можешь ли графически интерпиртировать регуляризацию? Почему она помогает бороться с переобучением?
Картинка 1, 2
Регуляризация — это метод добавления штрафа в функцию потерь для уменьшения сложности модели.
L1-регуляризация (Lasso): добавляет штраф на сумму модулей коэффициентов.
L2-регуляризация (Ridge): добавляет штраф на сумму квадратов коэффициентов.
Графическая интерпретация:
L1-регуляризация (Lasso): штраф создает ромбовидный контур ограничений. Это приводит к тому, что веса некоторых признаков могут становиться равными нулю, делая модель разреженной.
L2-регуляризация (Ridge): штраф формирует круговые контуры ограничений. Это приводит к тому, что веса уменьшаются равномерно, сохраняя все признаки в модели, но снижая их вклад.
Почему помогает: Уменьшает влияние нерелевантных признаков и сложных моделей.


*️⃣Какие методы борьбы с переобучением?
- Регуляризация (L1, L2).
- Уменьшение сложности модели путём отбора фичей
- Добавление больше чистых данных.
- Кросс-валидация.


*️⃣Что такое Cross-Validation? TimeSeries-Cross-Validation?
Картинка 3, 4
Кросс-валидация (CV) — метод оценки качества модели через разбиение данных на тренировочные и валидационные наборы (например, K-Fold).
TimeSeries-CV: используется для временных рядов, учитывает временную зависимость. Пример: sliding window или expanding window.

BY Ebout Data Science | Дима Савелко


Share with your friend now:
tgoop.com/eboutdatascience/177

View MORE
Open in Telegram


Telegram News

Date: |

Add the logo from your device. Adjust the visible area of your image. Congratulations! Now your Telegram channel has a face Click “Save”.! "Doxxing content is forbidden on Telegram and our moderators routinely remove such content from around the world," said a spokesman for the messaging app, Remi Vaughn. Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. Those being doxxed include outgoing Chief Executive Carrie Lam Cheng Yuet-ngor, Chung and police assistant commissioner Joe Chan Tung, who heads police's cyber security and technology crime bureau. Select “New Channel”
from us


Telegram Ebout Data Science | Дима Савелко
FROM American