tgoop.com/dsproglib/6633
Create:
Last Update:
Last Update:
Пропущенные данные — распространённая проблема в реальных проектах. Причины могут быть разными: ошибки при сборе, повреждение файлов, неполные опросы и прочее.
Представляем три продвинутых способа иммутации пропусков с использованием Pandas и Scikit-learn:
Использует модели, например, Байесовскую регрессию или случайный лес, чтобы последовательно заполнять пропуски, обучаясь на известных данных.
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
iterative_imputer = IterativeImputer(random_state=42, max_iter=10)
df_imputed = pd.DataFrame(iterative_imputer.fit_transform(df), columns=df.columns)
print(df_imputed.isnull().sum().sum()) # Пропусков больше нет
Можно менять модель, например, использовать RandomForestRegressor для иммутации.
Заполняет пропуски, опираясь на похожие строки с известными значениями. Вес соседей можно задавать по расстоянию или равномерно.
from sklearn.impute import KNNImputer
knn_imputer = KNNImputer(n_neighbors=5, weights='distance')
df_knn = pd.DataFrame(knn_imputer.fit_transform(df), columns=df.columns)
print(df_knn.isnull().sum().sum())
Запускаем разные иммутационные модели, получаем несколько вариантов заполненных данных, а затем выбираем лучший результат, ориентируясь на ключевые признаки:
from sklearn.linear_model import BayesianRidge
from sklearn.ensemble import ExtraTreesRegressor, RandomForestRegressor
imputers = {
'bayesian_ridge': IterativeImputer(estimator=BayesianRidge(), random_state=42),
'extra_trees': IterativeImputer(estimator=ExtraTreesRegressor(n_estimators=10, random_state=42), random_state=42),
'rf_regressor': IterativeImputer(estimator=RandomForestRegressor(n_estimators=10, random_state=42), random_state=42)
}
imputed_datasets = {}
for name, imputer in imputers.items():
imputed_datasets[name] = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
print(f"{name}: Средний доход = {imputed_datasets[name]['income'].mean():.2f}")
— KNN хорошо подходит для небольших числовых датасетов, но требует ресурсов на больших.
— Ансамблевые методы дают лучшее качество, но сложнее и тяжелее в вычислениях.
— MICE — золотая середина для многих задач.
Библиотека дата-сайентиста #буст