DSPROGLIB Telegram 6605
🎯 SemHash — очистка датасетов с помощью семантического поиска

SemHash — это лёгкий и быстрый инструмент для:
— дедупликации (поиск и удаление дубликатов)
— фильтрации выбросов
— выбора репрезентативных примеров

Работает на базе:
🤖 Model2Vec — генерация эмбеддингов
🤖 Vicinity — быстрый поиск по векторной близости (ANN)

Что умеет SemHash:
🤖 Очистка одного датасета (дубликаты, выбросы, ядро)
🤖 Исключение пересечений между train/test
🤖 Работа с простыми текстами и сложными multi-column датасетами
🤖 Удобный просмотр причин дедупликации и выбросов

Быстрый старт:
pip install semhash


from datasets import load_dataset
from semhash import SemHash

texts = load_dataset("ag_news", split="train")["text"]
semhash = SemHash.from_records(records=texts)

deduplicated = semhash.self_deduplicate().selected
filtered = semhash.self_filter_outliers().selected
representative = semhash.self_find_representative().selected


Также можно:
— Удалять дубликаты между двумя датасетами (train/test leakage)
— Работать с датасетами QA-формата (columns=["question", "context"])
— Использовать DataFrame и кастомные эмбеддинги

Пример: исключаем утечку между train и test
train = load_dataset("ag_news", split="train")["text"]
test = load_dataset("ag_news", split="test")["text"]

semhash = SemHash.from_records(records=train)
clean_test = semhash.deduplicate(records=test, threshold=0.9).selected


Почему это удобно:
— Быстро: работает на ANN-поиске
— Гибко: один или два датасета, текст или таблицы
— Пояснимо: можно посмотреть, почему запись считается дубликатом
— Масштабируемо: работает с миллионами записей
— Легковесно: минимум зависимостей

📌 Совет: для больших датасетов (>1M) оставляйте use_ann=True, это сильно ускоряет работу при высокой точности.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/dsproglib/6605
Create:
Last Update:

🎯 SemHash — очистка датасетов с помощью семантического поиска

SemHash — это лёгкий и быстрый инструмент для:
— дедупликации (поиск и удаление дубликатов)
— фильтрации выбросов
— выбора репрезентативных примеров

Работает на базе:
🤖 Model2Vec — генерация эмбеддингов
🤖 Vicinity — быстрый поиск по векторной близости (ANN)

Что умеет SemHash:
🤖 Очистка одного датасета (дубликаты, выбросы, ядро)
🤖 Исключение пересечений между train/test
🤖 Работа с простыми текстами и сложными multi-column датасетами
🤖 Удобный просмотр причин дедупликации и выбросов

Быстрый старт:

pip install semhash


from datasets import load_dataset
from semhash import SemHash

texts = load_dataset("ag_news", split="train")["text"]
semhash = SemHash.from_records(records=texts)

deduplicated = semhash.self_deduplicate().selected
filtered = semhash.self_filter_outliers().selected
representative = semhash.self_find_representative().selected


Также можно:
— Удалять дубликаты между двумя датасетами (train/test leakage)
— Работать с датасетами QA-формата (columns=["question", "context"])
— Использовать DataFrame и кастомные эмбеддинги

Пример: исключаем утечку между train и test
train = load_dataset("ag_news", split="train")["text"]
test = load_dataset("ag_news", split="test")["text"]

semhash = SemHash.from_records(records=train)
clean_test = semhash.deduplicate(records=test, threshold=0.9).selected


Почему это удобно:
— Быстро: работает на ANN-поиске
— Гибко: один или два датасета, текст или таблицы
— Пояснимо: можно посмотреть, почему запись считается дубликатом
— Масштабируемо: работает с миллионами записей
— Легковесно: минимум зависимостей

📌 Совет: для больших датасетов (>1M) оставляйте use_ann=True, это сильно ускоряет работу при высокой точности.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tgoop.com/dsproglib/6605

View MORE
Open in Telegram


Telegram News

Date: |

How to Create a Private or Public Channel on Telegram? Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. Users are more open to new information on workdays rather than weekends. 4How to customize a Telegram channel? For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data.
from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM American