DSPROGLIB Telegram 6548
👌 Как найти и избежать утечек данных: пошаговое руководство

Утечки данных — одна из самых распространённых и коварных ошибок в построении моделей машинного обучения.

Вот как шаг за шагом выявить и предотвратить утечки в проектах.

1️⃣ Понимайте, что такое утечка данных

Утечка — когда модель получает данные из будущего или из «ответов», которых не должно быть во время обучения. Вот основные типы:

Целевая утечка (Target Leakage): признаки напрямую или косвенно содержат информацию о целевой переменной.
📝Пример: использовать «сумму страховых выплат» при прогнозе повторной госпитализации.

Утечка после события (Post-Event Leakage): признаки формируются на основе данных, которые появляются после момента предсказания.
📝Пример: использовать данные после завершения полёта для прогнозирования аварии во время полёта.

Утечка при разбиении данных (Train-Test Leakage): когда информация из тестовой выборки просачивается в тренировочную. Включает:
— анализ всех данных до разделения (корреляции, масштабирование)
— дубликаты и пересечения между train и test
— нарушение временного порядка для временных данных
— неправильное кросс-валидационное разделение

Утечка по идентификаторам (Entity Leakage): когда уникальные ID встречаются в обеих выборках, и модель запоминает их, а не закономерности.
📝 Пример: номер самолёта в train и test.

2️⃣ Внимательно выбирайте признаки

Удаляйте признаки, которые содержат информацию, недоступную на момент предсказания (например, отчёты после события).
Будьте осторожны с ID и уникальными идентификаторами — модель может просто «запомнить» их.

3️⃣ Соблюдайте правильный порядок работы с данными

Сначала разделяйте данные на тренировочные и тестовые, до любых вычислений и преобразований.
Для временных данных обязательно сохраняйте хронологический порядок, чтобы не давать модели информацию из будущего.
Избегайте дублирования и пересечений между train и test.

4️⃣ Правильно стройте пайплайны

Масштабирование, кодирование, уменьшение размерности (PCA и др.) обучайте только на тренировочных данных.
В кросс-валидации трансформации должны выполняться внутри каждого фолда отдельно.

5️⃣ Анализируйте только тренировочные данные

Корреляции, статистики и подбор параметров делайте только на тренировочных данных.
Не смотрите на тест, пока не завершите обучение и отладку.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/dsproglib/6548
Create:
Last Update:

👌 Как найти и избежать утечек данных: пошаговое руководство

Утечки данных — одна из самых распространённых и коварных ошибок в построении моделей машинного обучения.

Вот как шаг за шагом выявить и предотвратить утечки в проектах.

1️⃣ Понимайте, что такое утечка данных

Утечка — когда модель получает данные из будущего или из «ответов», которых не должно быть во время обучения. Вот основные типы:

Целевая утечка (Target Leakage): признаки напрямую или косвенно содержат информацию о целевой переменной.
📝Пример: использовать «сумму страховых выплат» при прогнозе повторной госпитализации.

Утечка после события (Post-Event Leakage): признаки формируются на основе данных, которые появляются после момента предсказания.
📝Пример: использовать данные после завершения полёта для прогнозирования аварии во время полёта.

Утечка при разбиении данных (Train-Test Leakage): когда информация из тестовой выборки просачивается в тренировочную. Включает:
— анализ всех данных до разделения (корреляции, масштабирование)
— дубликаты и пересечения между train и test
— нарушение временного порядка для временных данных
— неправильное кросс-валидационное разделение

Утечка по идентификаторам (Entity Leakage): когда уникальные ID встречаются в обеих выборках, и модель запоминает их, а не закономерности.
📝 Пример: номер самолёта в train и test.

2️⃣ Внимательно выбирайте признаки

Удаляйте признаки, которые содержат информацию, недоступную на момент предсказания (например, отчёты после события).
Будьте осторожны с ID и уникальными идентификаторами — модель может просто «запомнить» их.

3️⃣ Соблюдайте правильный порядок работы с данными

Сначала разделяйте данные на тренировочные и тестовые, до любых вычислений и преобразований.
Для временных данных обязательно сохраняйте хронологический порядок, чтобы не давать модели информацию из будущего.
Избегайте дублирования и пересечений между train и test.

4️⃣ Правильно стройте пайплайны

Масштабирование, кодирование, уменьшение размерности (PCA и др.) обучайте только на тренировочных данных.
В кросс-валидации трансформации должны выполняться внутри каждого фолда отдельно.

5️⃣ Анализируйте только тренировочные данные

Корреляции, статистики и подбор параметров делайте только на тренировочных данных.
Не смотрите на тест, пока не завершите обучение и отладку.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tgoop.com/dsproglib/6548

View MORE
Open in Telegram


Telegram News

Date: |

Concise The optimal dimension of the avatar on Telegram is 512px by 512px, and it’s recommended to use PNG format to deliver an unpixelated avatar. Telegram users themselves will be able to flag and report potentially false content. Members can post their voice notes of themselves screaming. Interestingly, the group doesn’t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group. Step-by-step tutorial on desktop:
from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM American