DSPROGLIB Telegram 6445
🚀 Как ускорить Python-код для ресурсоёмких задач

При работе с большими объёмами данных Python может «тормозить», особенно при обработке сотен тысяч строк или обучении сложных ML-моделей.

🎯 Ниже — два приёма, которые позволят ускорить обучение и загрузку данных в десятки раз.

1️⃣ Используйте GPU с включённым memory growth

По умолчанию TensorFlow может попытаться занять всю память видеокарты, что приводит к ошибке OOM. Решение — включить «постепенное» выделение памяти:
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)


2️⃣ Оптимизируйте загрузку данных с `tf.data`

Загрузка Excel-файла — типичное узкое место (Disk I/O). Использование tf.data.Dataset с prefetch позволяет загружать и обрабатывать данные асинхронно.

Пример:
dataset = tf.data.Dataset.from_generator(
data_generator,
output_signature={col: tf.TensorSpec(shape=(), dtype=tf.float32) for col in data.columns}
).shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)


📎 Вывод:
GPU и tf.data с правильной настройкой дают мощный прирост производительности. Особенно важно при работе с крупными ML-пайплайнами и в продакшене.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/dsproglib/6445
Create:
Last Update:

🚀 Как ускорить Python-код для ресурсоёмких задач

При работе с большими объёмами данных Python может «тормозить», особенно при обработке сотен тысяч строк или обучении сложных ML-моделей.

🎯 Ниже — два приёма, которые позволят ускорить обучение и загрузку данных в десятки раз.

1️⃣ Используйте GPU с включённым memory growth

По умолчанию TensorFlow может попытаться занять всю память видеокарты, что приводит к ошибке OOM. Решение — включить «постепенное» выделение памяти:

gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)


2️⃣ Оптимизируйте загрузку данных с `tf.data`

Загрузка Excel-файла — типичное узкое место (Disk I/O). Использование tf.data.Dataset с prefetch позволяет загружать и обрабатывать данные асинхронно.

Пример:
dataset = tf.data.Dataset.from_generator(
data_generator,
output_signature={col: tf.TensorSpec(shape=(), dtype=tf.float32) for col in data.columns}
).shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)


📎 Вывод:
GPU и tf.data с правильной настройкой дают мощный прирост производительности. Особенно важно при работе с крупными ML-пайплайнами и в продакшене.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tgoop.com/dsproglib/6445

View MORE
Open in Telegram


Telegram News

Date: |

Image: Telegram. bank east asia october 20 kowloon End-to-end encryption is an important feature in messaging, as it's the first step in protecting users from surveillance. The court said the defendant had also incited people to commit public nuisance, with messages calling on them to take part in rallies and demonstrations including at Hong Kong International Airport, to block roads and to paralyse the public transportation system. Various forms of protest promoted on the messaging platform included general strikes, lunchtime protests and silent sit-ins. Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.”
from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM American