DSPROGLIB Telegram 6441
📊 Промт дня: быстрый разведочный анализ (EDA) нового датасета

Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.

Промт:
Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты:
• Определи типы переменных (числовые, категориальные и пр.).
• Проверь наличие и долю пропущенных значений по столбцам.
• Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.).
• Оцени распределения признаков и выдели потенциальные выбросы.
• Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.


🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.

Поддерживается использование специализированных инструментов:
📝 pandas_profiling / ydata-profiling — для автоматического отчета,
📝 sweetviz — для визуального сравнения датасетов,
📝 seaborn и matplotlib — для точечных визуализаций распределений и корреляций.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/dsproglib/6441
Create:
Last Update:

📊 Промт дня: быстрый разведочный анализ (EDA) нового датасета

Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.

Промт:

Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты:
• Определи типы переменных (числовые, категориальные и пр.).
• Проверь наличие и долю пропущенных значений по столбцам.
• Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.).
• Оцени распределения признаков и выдели потенциальные выбросы.
• Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.


🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.

Поддерживается использование специализированных инструментов:
📝 pandas_profiling / ydata-profiling — для автоматического отчета,
📝 sweetviz — для визуального сравнения датасетов,
📝 seaborn и matplotlib — для точечных визуализаций распределений и корреляций.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Share with your friend now:
tgoop.com/dsproglib/6441

View MORE
Open in Telegram


Telegram News

Date: |

Ng was convicted in April for conspiracy to incite a riot, public nuisance, arson, criminal damage, manufacturing of explosives, administering poison and wounding with intent to do grievous bodily harm between October 2019 and June 2020. Write your hashtags in the language of your target audience. Telegram Android app: Open the chats list, click the menu icon and select “New Channel.” The best encrypted messaging apps The visual aspect of channels is very critical. In fact, design is the first thing that a potential subscriber pays attention to, even though unconsciously.
from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM American