Notice: file_put_contents(): Write of 10374 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50

Warning: file_put_contents(): Only 16384 of 26758 bytes written, possibly out of free disk space in /var/www/tgoop/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение@dsproglib P.6408
DSPROGLIB Telegram 6408
This media is not supported in your browser
VIEW IN TELEGRAM
How to: работать с 11 типами переменных в данных

В анализе данных и машинном обучении важно понимать, с какими типами переменных вы имеете дело — это помогает правильно интерпретировать данные, строить модели и избегать ошибок.

👇 Разберём 11 ключевых типов переменных.

➡️ Независимые и зависимые переменные:
🔵Независимые переменные (или предикторы/фичи) — это признаки, которые используются в качестве входных данных для предсказания результата.
🔵 Зависимая переменная — это результат, который предсказывается. Её также называют целевой переменной, ответом или выходной переменной.
🔵 Пример: предсказываем уровень дохода (зависимая переменная) по возрасту, образованию и стажу (независимые переменные).

➡️ Спутывающие и коррелированные переменные:
🔵 Спутывающие переменные влияют и на независимую, и на зависимую переменную, искажают причинно-следственные связи.
🔵 Коррелированные переменные могут быть связаны между собой, но это не означает наличие причинной связи.
🔵 Важно: «Корреляция ≠ причинность».
🔵 Пример: продажи мороженого и кондиционеров растут одновременно не из-за связи между ними, а из-за жары (спутывающая переменная).

➡️ Контрольные переменные:
🔵 Не являются объектом исследования, но учитываются, чтобы избежать искажения результатов.
🔵 Пример: при исследовании влияния образования на доход контролируют возраст и регион.

➡️ Латентные (скрытые) переменные:
🔵 Не наблюдаются напрямую, но влияют на данные. Выводятся опосредованно через другие признаки.
🔵 Пример: кластеры пользователей (предпочтения, поведение) — латентны, но можно выявить с помощью кластеризации.

➡️ Переменные взаимодействия:
🔵 Отражают влияние комбинации двух или более переменных.
🔵 Пример: взаимодействие плотности населения и дохода может выявить различия в потреблении по регионам.

➡️ Стационарные и нестационарные переменные:
🔵 Стационарные: статистики (среднее, дисперсия) не меняются со временем.
🔵 Нестационарные: имеют тренды, сезонность, нарушают предположения многих моделей.
🔵 Пример: цены акций — нестационарны, их нужно преобразовать перед анализом (например, логарифм, разности).

➡️ Отставшие переменные:
🔵 Переменные, которые представляют собой значения с предыдущих временных точек.
🔵 Продажи в прошлом месяце — отставшая переменная для прогноза продаж в следующем.

➡️ Утечка переменных:
🔵 Эти переменные предоставляют информацию о целевой переменной, которая была бы недоступна во время предсказания. Это приводит к чрезмерно оптимистичной производительности модели на обучающих данных, но она плохо обобщается на новые данные.
🔵 Пример: дата оформления страховки появляется в обучении, но при предсказании она ещё неизвестна.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍3❤‍🔥1



tgoop.com/dsproglib/6408
Create:
Last Update:

How to: работать с 11 типами переменных в данных

В анализе данных и машинном обучении важно понимать, с какими типами переменных вы имеете дело — это помогает правильно интерпретировать данные, строить модели и избегать ошибок.

👇 Разберём 11 ключевых типов переменных.

➡️ Независимые и зависимые переменные:
🔵Независимые переменные (или предикторы/фичи) — это признаки, которые используются в качестве входных данных для предсказания результата.
🔵 Зависимая переменная — это результат, который предсказывается. Её также называют целевой переменной, ответом или выходной переменной.
🔵 Пример: предсказываем уровень дохода (зависимая переменная) по возрасту, образованию и стажу (независимые переменные).

➡️ Спутывающие и коррелированные переменные:
🔵 Спутывающие переменные влияют и на независимую, и на зависимую переменную, искажают причинно-следственные связи.
🔵 Коррелированные переменные могут быть связаны между собой, но это не означает наличие причинной связи.
🔵 Важно: «Корреляция ≠ причинность».
🔵 Пример: продажи мороженого и кондиционеров растут одновременно не из-за связи между ними, а из-за жары (спутывающая переменная).

➡️ Контрольные переменные:
🔵 Не являются объектом исследования, но учитываются, чтобы избежать искажения результатов.
🔵 Пример: при исследовании влияния образования на доход контролируют возраст и регион.

➡️ Латентные (скрытые) переменные:
🔵 Не наблюдаются напрямую, но влияют на данные. Выводятся опосредованно через другие признаки.
🔵 Пример: кластеры пользователей (предпочтения, поведение) — латентны, но можно выявить с помощью кластеризации.

➡️ Переменные взаимодействия:
🔵 Отражают влияние комбинации двух или более переменных.
🔵 Пример: взаимодействие плотности населения и дохода может выявить различия в потреблении по регионам.

➡️ Стационарные и нестационарные переменные:
🔵 Стационарные: статистики (среднее, дисперсия) не меняются со временем.
🔵 Нестационарные: имеют тренды, сезонность, нарушают предположения многих моделей.
🔵 Пример: цены акций — нестационарны, их нужно преобразовать перед анализом (например, логарифм, разности).

➡️ Отставшие переменные:
🔵 Переменные, которые представляют собой значения с предыдущих временных точек.
🔵 Продажи в прошлом месяце — отставшая переменная для прогноза продаж в следующем.

➡️ Утечка переменных:
🔵 Эти переменные предоставляют информацию о целевой переменной, которая была бы недоступна во время предсказания. Это приводит к чрезмерно оптимистичной производительности модели на обучающих данных, но она плохо обобщается на новые данные.
🔵 Пример: дата оформления страховки появляется в обучении, но при предсказании она ещё неизвестна.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Share with your friend now:
tgoop.com/dsproglib/6408

View MORE
Open in Telegram


Telegram News

Date: |

The best encrypted messaging apps The main design elements of your Telegram channel include a name, bio (brief description), and avatar. Your bio should be: The visual aspect of channels is very critical. In fact, design is the first thing that a potential subscriber pays attention to, even though unconsciously. Telegram channels fall into two types: As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.”
from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM American