tgoop.com/dsproglib/6328
Create:
Last Update:
Last Update:
👋 Привет, дата-сайнтисты и инженеры! Один из наших подписчиков поделился карьерной дилеммой, которая может откликнуться многим.
💬 Вот его ситуация:
«Я — дата-сайнтист, сейчас ищу работу в крупной техкомпании. На собеседованиях звучат обещания: работа над интересными задачами, автономия, перспективы роста до Senior. Но слышал и другую сторону — что в Big Tech роль DS нередко сводится к рутине: чистка данных, построение метрик для чужих решений, минимальное влияние на бизнес.
Сейчас я работаю в небольшой компании, где делаю всё: от анализа и визуализации до ML и поддержки аналитиков. Это даёт свободу и ощущение пользы, но платят меньше, и в резюме нет громких названий.
В Big Tech, как говорят:
— DS часто подключаются на поздних стадиях, когда ключевые решения уже приняты.
— Роль ограничена задачами от продукт-менеджеров, без возможности задавать направление.
— Не все менеджеры (особенно из продуктовой или инженерной вертикали) понимают, как раскрыть потенциал DS.
Боюсь, что могу оказаться в «мертвой зоне» — когда формально в Big Tech, но без настоящего роста и влияния. Может, стоит искать команды, где DS работают ближе к стратегии? Или перейти в mid-size компанию с фокусом на DS+ML, где можно быть драйвером, а не исполнителем?»
💡 Что посоветуете:
— Как отличить «живую» команду от «рутинной» на собеседовании?
— Какие вопросы вы задаёте, чтобы понять, есть ли пространство для роста и реального влияния?
— Где, по вашему опыту, дата-сайнтисты действительно формируют вектор продукта или бизнеса?
Давайте поможем! Делитесь опытом и советами в комментах
P.S. Если хотите задать вопрос, заполните нашу гугл-форму. Это займет 5 минут.
Библиотека дата-сайентиста #междусобойчик