Warning: file_put_contents(aCache/aDaily/post/dsproglib/-6263-6264-6265-6266-6267-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение@dsproglib P.6267
DSPROGLIB Telegram 6267
🔄 Изменения в схеме данных: как избежать проблем для дата-команд

Мы рассмотрим четыре стратегии адаптации к изменениям и их возможные комбинации.

1. Встречи — самый простой подход

📌 Только коммуникация: команды источника данных и аналитики заранее обсуждают изменения, согласовывают сроки и схему данных перед внесением изменений в исходные наборы данных.

▪️ Плюсы:
— Самый простой подход
— Документирование в Confluence, Google Docs и т. д.
— Договоренность между командами

▪️ Минусы:
— Подвержен ошибкам
— Встречи замедляют процесс разработки
— Невозможно учесть все нюансы данных

🎯 Как реализовать:
— Фиксируйте договоренности в Confluence или Google Docs
— Включайте конкретные задачи и шаги для реализации изменений

2. Источник просто сбрасывает данные, а дата-команда разбирается

📌 Dump & Forget: команда источника просто выгружает данные, а дата-команда работает с тем, что получает. Этот метод наиболее распространен в индустрии.

▪️Плюсы:
— Самый удобный способ для команды источника
— Позволяет источнику работать быстро
— Достаточно для большинства бизнес-кейсов

▪️Минусы:
— Дата-команда постоянно догоняет изменения
— Плохие данные, сбои конвейеров и технический долг
— Дата-команда теряет концептуальное понимание данных

🎯 Как реализовать:
— Используйте Apache Iceberg и Spark’s mergeSchema
— Для инструментов типа dbt включайте on_schema_change

3. Дата-команда участвует в ревью изменений схемы данных

📌 Upstream Review: дата-команда участвует в моделировании данных источником. Как правило, дата-команды более внимательно относятся к проработке моделей данных.

▪️Плюсы:
— Предотвращает появление плохих данных
— Обеспечивает качественную схему данных
— Улучшает понимание данных между командами

▪️Минусы:
— Замедляет работу команды источника
— Не позволяет предотвратить агрегированные ошибки (например, несоответствие средней выручки за разные дни)

🎯 Как реализовать:
— Ускорьте процесс с помощью data contracts
— Используйте CODEOWNERS в GitHub, чтобы дата-команды участвовали в ревью

4. Валидация входных данных перед обработкой

📌 Input Validation: дата-команда проверяет входные данные перед их использованием. Если обнаруживается проблема, необходимо взаимодействовать с командой источника, чтобы исправить данные и повторно их обработать.

▪️ Плюсы:
— Быстрое обнаружение проблем
— Автоматизация отладки ошибок и уведомление команды источника

▪️ Минусы:
— Необходимо согласовывать проверки данных между командами
— Множественные проверки увеличивают время обработки данных

🎯 Как реализовать:
— Используйте любой инструмент контроля качества данных
— В потоковых системах применяйте DLQ (Dead Letter Queue) и реконсиляционные паттерны

Библиотека дата-сайентиста #буст
👍31



tgoop.com/dsproglib/6267
Create:
Last Update:

🔄 Изменения в схеме данных: как избежать проблем для дата-команд

Мы рассмотрим четыре стратегии адаптации к изменениям и их возможные комбинации.

1. Встречи — самый простой подход

📌 Только коммуникация: команды источника данных и аналитики заранее обсуждают изменения, согласовывают сроки и схему данных перед внесением изменений в исходные наборы данных.

▪️ Плюсы:
— Самый простой подход
— Документирование в Confluence, Google Docs и т. д.
— Договоренность между командами

▪️ Минусы:
— Подвержен ошибкам
— Встречи замедляют процесс разработки
— Невозможно учесть все нюансы данных

🎯 Как реализовать:
— Фиксируйте договоренности в Confluence или Google Docs
— Включайте конкретные задачи и шаги для реализации изменений

2. Источник просто сбрасывает данные, а дата-команда разбирается

📌 Dump & Forget: команда источника просто выгружает данные, а дата-команда работает с тем, что получает. Этот метод наиболее распространен в индустрии.

▪️Плюсы:
— Самый удобный способ для команды источника
— Позволяет источнику работать быстро
— Достаточно для большинства бизнес-кейсов

▪️Минусы:
— Дата-команда постоянно догоняет изменения
— Плохие данные, сбои конвейеров и технический долг
— Дата-команда теряет концептуальное понимание данных

🎯 Как реализовать:
— Используйте Apache Iceberg и Spark’s mergeSchema
— Для инструментов типа dbt включайте on_schema_change

3. Дата-команда участвует в ревью изменений схемы данных

📌 Upstream Review: дата-команда участвует в моделировании данных источником. Как правило, дата-команды более внимательно относятся к проработке моделей данных.

▪️Плюсы:
— Предотвращает появление плохих данных
— Обеспечивает качественную схему данных
— Улучшает понимание данных между командами

▪️Минусы:
— Замедляет работу команды источника
— Не позволяет предотвратить агрегированные ошибки (например, несоответствие средней выручки за разные дни)

🎯 Как реализовать:
— Ускорьте процесс с помощью data contracts
— Используйте CODEOWNERS в GitHub, чтобы дата-команды участвовали в ревью

4. Валидация входных данных перед обработкой

📌 Input Validation: дата-команда проверяет входные данные перед их использованием. Если обнаруживается проблема, необходимо взаимодействовать с командой источника, чтобы исправить данные и повторно их обработать.

▪️ Плюсы:
— Быстрое обнаружение проблем
— Автоматизация отладки ошибок и уведомление команды источника

▪️ Минусы:
— Необходимо согласовывать проверки данных между командами
— Множественные проверки увеличивают время обработки данных

🎯 Как реализовать:
— Используйте любой инструмент контроля качества данных
— В потоковых системах применяйте DLQ (Dead Letter Queue) и реконсиляционные паттерны

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение








Share with your friend now:
tgoop.com/dsproglib/6267

View MORE
Open in Telegram


Telegram News

Date: |

A vandalised bank during the 2019 protest. File photo: May James/HKFP. 4How to customize a Telegram channel? 6How to manage your Telegram channel? The Standard Channel Telegram users themselves will be able to flag and report potentially false content.
from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM American