tgoop.com/dsproglib/6250
Create:
Last Update:
Last Update:
Используйте этот промпт для построения графиков с помощью Matplotlib.
🔹 Промпт:
I want you to act as a data scientist coding in Python. Given a dataframe {dataframe name} containing the columns {column names}, use Matplotlib to plot a {chart type} that shows the relationship between {variables}. Additionally, annotate the plot with the following details: {annotation requirements}. Format the plot by adjusting {specific formatting preferences}. Finally, change the plot's theme to {theme} to match the visual style of {theme description}.
Результат:
🔹 Качественные и профессиональные визуализации данных.
🔹 Подробное оформление и аннотации на графиках.
🔹 Удобное и понятное оформление графиков с использованием популярных тем.
✔️ Пример:
Исходный датафрейм с данными о возрасте, доходе и уровне образования:
import pandas as pd
data = {
'age': [25, 30, 35, 40, 45],
'income': [50000, 60000, 70000, 80000, 90000],
'education_level': ['Bachelors', 'Masters', 'PhD', 'Bachelors', 'Masters']
}
df = pd.DataFrame(data)
💬 Пример использования промпта:
I want you to act as a data scientist coding in Python. Given a dataframe df containing the columns ['age', 'income', 'education_level'], use Matplotlib to plot a scatter plot that shows the relationship between age and income. Additionally, annotate the plot with the following details: highlight the highest and lowest income values. Format the plot by adjusting the title, axis labels, and grid lines. Finally, change the plot's theme to seaborn-darkgrid to match the visual style of a clean and modern plot with dark gridlines.
Библиотека дата-сайентиста #буст