DSPROGLIB Telegram 6223
This media is not supported in your browser
VIEW IN TELEGRAM
📌 Это база: аctive learning

Разметка данных — процесс сложный, дорогой и отнимающий много времени. Active Learning (Активное обучение) — способ эффективно обучать модели, даже если данных с разметкой нет.

🔍 Как это работает:
1. Начинаем с небольшой разметки
Размечаем вручную лишь малую часть данных (~1%).

2. Обучаем начальную модель
На основе размеченных данных строим базовую модель (она будет неточной, но это нормально).

3. Предсказываем метки для оставшихся данных
Но мы не знаем, насколько предсказания модели точны.

4. Оцениваем уверенность модели
• Если разница между 1-м и 2-м по вероятности классом большая, значит, модель уверена в предсказании.
• Если разница маленькая, значит, модель сомневается.

5. Размечаем только неуверенные предсказания
• Вместо того, чтобы вручную размечать весь набор данных, мы фокусируемся только на сложных примерах.
• Полученные новые метки добавляем в тренировочный набор.

6. Повторяем процесс
• Обучаем модель заново.
• Генерируем предсказания и уровни уверенности.
• Размечаем только сложные случаи.
• Повторяем, пока модель не станет достаточно точной.

🤝 Cooperative Learning:
Можно пойти дальше:
✔️ Низко-уверенные примеры размечаем вручную.
✔️ Высоко-уверенные примеры добавляем в тренировочный набор с их предсказанными метками.

🔹 Что это даёт:
• Сокращает количество размечаемых данных.
• Ускоряет обучение.
• Улучшает качество модели с минимальными затратами.

Библиотека дата-сайентиста #буст
👍112



tgoop.com/dsproglib/6223
Create:
Last Update:

📌 Это база: аctive learning

Разметка данных — процесс сложный, дорогой и отнимающий много времени. Active Learning (Активное обучение) — способ эффективно обучать модели, даже если данных с разметкой нет.

🔍 Как это работает:
1. Начинаем с небольшой разметки
Размечаем вручную лишь малую часть данных (~1%).

2. Обучаем начальную модель
На основе размеченных данных строим базовую модель (она будет неточной, но это нормально).

3. Предсказываем метки для оставшихся данных
Но мы не знаем, насколько предсказания модели точны.

4. Оцениваем уверенность модели
• Если разница между 1-м и 2-м по вероятности классом большая, значит, модель уверена в предсказании.
• Если разница маленькая, значит, модель сомневается.

5. Размечаем только неуверенные предсказания
• Вместо того, чтобы вручную размечать весь набор данных, мы фокусируемся только на сложных примерах.
• Полученные новые метки добавляем в тренировочный набор.

6. Повторяем процесс
• Обучаем модель заново.
• Генерируем предсказания и уровни уверенности.
• Размечаем только сложные случаи.
• Повторяем, пока модель не станет достаточно точной.

🤝 Cooperative Learning:
Можно пойти дальше:
✔️ Низко-уверенные примеры размечаем вручную.
✔️ Высоко-уверенные примеры добавляем в тренировочный набор с их предсказанными метками.

🔹 Что это даёт:
• Сокращает количество размечаемых данных.
• Ускоряет обучение.
• Улучшает качество модели с минимальными затратами.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Share with your friend now:
tgoop.com/dsproglib/6223

View MORE
Open in Telegram


Telegram News

Date: |

Private channels are only accessible to subscribers and don’t appear in public searches. To join a private channel, you need to receive a link from the owner (administrator). A private channel is an excellent solution for companies and teams. You can also use this type of channel to write down personal notes, reflections, etc. By the way, you can make your private channel public at any moment. Hui said the messages, which included urging the disruption of airport operations, were attempts to incite followers to make use of poisonous, corrosive or flammable substances to vandalize police vehicles, and also called on others to make weapons to harm police. Done! Now you’re the proud owner of a Telegram channel. The next step is to set up and customize your channel. The main design elements of your Telegram channel include a name, bio (brief description), and avatar. Your bio should be: Telegram channels fall into two types:
from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM American