Notice: file_put_contents(): Write of 19284 bytes failed with errno=28 No space left on device in /var/www/tgoop/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение@dsproglib P.5581
DSPROGLIB Telegram 5581
Что такое Бустинг в машинном обучении

Бустинг — это один из мощных методов повышения качества моделей машинного обучения. Его цель — объединение нескольких слабых моделей (обычно простых алгоритмов) для создания одной сильной модели, которая улучшает точность предсказаний.

🌻 Как это работает?

▪️ Итеративное обучение: Модели обучаются поочередно. Каждая следующая модель стремится исправить ошибки предыдущей
▪️ Вес ошибок: Большое внимание уделяется тем данным, на которых предыдущие модели ошибались. Это позволяет концентрироваться на сложных для предсказания примерах
▪️ Комбинирование результатов: Финальный результат формируется путем взвешенного объединения предсказаний всех моделей

🌻 Когда использовать?

Бустинг особенно полезен, когда базовые алгоритмы не дают нужной точности. Например, он широко применяется в задачах классификации и регрессии, а также на соревнованиях по анализу данных, таких как Kaggle

В нашем курсе узнаете подробнее о машинном обучении, в частности, о бустинге:
🔵 Базовые модели ML и приложения

#машинное_обучение
Please open Telegram to view this post
VIEW IN TELEGRAM
🎉53👍2



tgoop.com/dsproglib/5581
Create:
Last Update:

Что такое Бустинг в машинном обучении

Бустинг — это один из мощных методов повышения качества моделей машинного обучения. Его цель — объединение нескольких слабых моделей (обычно простых алгоритмов) для создания одной сильной модели, которая улучшает точность предсказаний.

🌻 Как это работает?

▪️ Итеративное обучение: Модели обучаются поочередно. Каждая следующая модель стремится исправить ошибки предыдущей
▪️ Вес ошибок: Большое внимание уделяется тем данным, на которых предыдущие модели ошибались. Это позволяет концентрироваться на сложных для предсказания примерах
▪️ Комбинирование результатов: Финальный результат формируется путем взвешенного объединения предсказаний всех моделей

🌻 Когда использовать?

Бустинг особенно полезен, когда базовые алгоритмы не дают нужной точности. Например, он широко применяется в задачах классификации и регрессии, а также на соревнованиях по анализу данных, таких как Kaggle

В нашем курсе узнаете подробнее о машинном обучении, в частности, о бустинге:
🔵 Базовые модели ML и приложения

#машинное_обучение

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tgoop.com/dsproglib/5581

View MORE
Open in Telegram


Telegram News

Date: |

1What is Telegram Channels? While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram. 3How to create a Telegram channel? Telegram is a leading cloud-based instant messages platform. It became popular in recent years for its privacy, speed, voice and video quality, and other unmatched features over its main competitor Whatsapp.
from us


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM American