DS_INTERVIEW_LIB Telegram 966
Что делать, если во временных рядах есть сезонные пики, которые могут быть ошибочно приняты за выбросы

Временные ряды часто имеют регулярные сезонные колебания — например, рост трафика в выходные или всплески продаж в праздники. Если такие пики воспринимаются как выбросы, модель может неправильно их интерпретировать и давать неточные прогнозы.

Что можно сделать:
1️⃣ Сезонная декомпозиция: методы вроде STL (Seasonal-Trend decomposition using Loess) позволяют выделить тренд, сезонность и остатки. После отделения сезонной составляющей можно искать выбросы только в остатках.
2️⃣ Учет временного контекста: добавьте в модель признаки, отражающие временные аспекты (например, день недели, час суток), чтобы алгоритм «понимал», когда пики — это норма.
3️⃣ Устойчивые модели прогнозирования: такие модели, как Prophet или SARIMA, умеют учитывать сезонность и различать регулярные циклы от настоящих аномалий.

Особую сложность представляет нерегулярная сезонность, например, неожиданные праздничные всплески. Если модель не знает об этих событиях, она может ошибочно посчитать их выбросами. Поэтому полезно добавлять внешнюю информацию о праздниках и акциях.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
3



tgoop.com/ds_interview_lib/966
Create:
Last Update:

Что делать, если во временных рядах есть сезонные пики, которые могут быть ошибочно приняты за выбросы

Временные ряды часто имеют регулярные сезонные колебания — например, рост трафика в выходные или всплески продаж в праздники. Если такие пики воспринимаются как выбросы, модель может неправильно их интерпретировать и давать неточные прогнозы.

Что можно сделать:
1️⃣ Сезонная декомпозиция: методы вроде STL (Seasonal-Trend decomposition using Loess) позволяют выделить тренд, сезонность и остатки. После отделения сезонной составляющей можно искать выбросы только в остатках.
2️⃣ Учет временного контекста: добавьте в модель признаки, отражающие временные аспекты (например, день недели, час суток), чтобы алгоритм «понимал», когда пики — это норма.
3️⃣ Устойчивые модели прогнозирования: такие модели, как Prophet или SARIMA, умеют учитывать сезонность и различать регулярные циклы от настоящих аномалий.

Особую сложность представляет нерегулярная сезонность, например, неожиданные праздничные всплески. Если модель не знает об этих событиях, она может ошибочно посчитать их выбросами. Поэтому полезно добавлять внешнюю информацию о праздниках и акциях.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/966

View MORE
Open in Telegram


Telegram News

Date: |

In 2018, Telegram’s audience reached 200 million people, with 500,000 new users joining the messenger every day. It was launched for iOS on 14 August 2013 and Android on 20 October 2013. Commenting about the court's concerns about the spread of false information related to the elections, Minister Fachin noted Brazil is "facing circumstances that could put Brazil's democracy at risk." During the meeting, the information technology secretary at the TSE, Julio Valente, put forward a list of requests the court believes will disinformation. More>> Telegram Android app: Open the chats list, click the menu icon and select “New Channel.” On June 7, Perekopsky met with Brazilian President Jair Bolsonaro, an avid user of the platform. According to the firm's VP, the main subject of the meeting was "freedom of expression."
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American