DS_INTERVIEW_LIB Telegram 966
Что делать, если во временных рядах есть сезонные пики, которые могут быть ошибочно приняты за выбросы

Временные ряды часто имеют регулярные сезонные колебания — например, рост трафика в выходные или всплески продаж в праздники. Если такие пики воспринимаются как выбросы, модель может неправильно их интерпретировать и давать неточные прогнозы.

Что можно сделать:
1️⃣ Сезонная декомпозиция: методы вроде STL (Seasonal-Trend decomposition using Loess) позволяют выделить тренд, сезонность и остатки. После отделения сезонной составляющей можно искать выбросы только в остатках.
2️⃣ Учет временного контекста: добавьте в модель признаки, отражающие временные аспекты (например, день недели, час суток), чтобы алгоритм «понимал», когда пики — это норма.
3️⃣ Устойчивые модели прогнозирования: такие модели, как Prophet или SARIMA, умеют учитывать сезонность и различать регулярные циклы от настоящих аномалий.

Особую сложность представляет нерегулярная сезонность, например, неожиданные праздничные всплески. Если модель не знает об этих событиях, она может ошибочно посчитать их выбросами. Поэтому полезно добавлять внешнюю информацию о праздниках и акциях.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/ds_interview_lib/966
Create:
Last Update:

Что делать, если во временных рядах есть сезонные пики, которые могут быть ошибочно приняты за выбросы

Временные ряды часто имеют регулярные сезонные колебания — например, рост трафика в выходные или всплески продаж в праздники. Если такие пики воспринимаются как выбросы, модель может неправильно их интерпретировать и давать неточные прогнозы.

Что можно сделать:
1️⃣ Сезонная декомпозиция: методы вроде STL (Seasonal-Trend decomposition using Loess) позволяют выделить тренд, сезонность и остатки. После отделения сезонной составляющей можно искать выбросы только в остатках.
2️⃣ Учет временного контекста: добавьте в модель признаки, отражающие временные аспекты (например, день недели, час суток), чтобы алгоритм «понимал», когда пики — это норма.
3️⃣ Устойчивые модели прогнозирования: такие модели, как Prophet или SARIMA, умеют учитывать сезонность и различать регулярные циклы от настоящих аномалий.

Особую сложность представляет нерегулярная сезонность, например, неожиданные праздничные всплески. Если модель не знает об этих событиях, она может ошибочно посчитать их выбросами. Поэтому полезно добавлять внешнюю информацию о праздниках и акциях.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/966

View MORE
Open in Telegram


Telegram News

Date: |

A new window will come up. Enter your channel name and bio. (See the character limits above.) Click “Create.” Commenting about the court's concerns about the spread of false information related to the elections, Minister Fachin noted Brazil is "facing circumstances that could put Brazil's democracy at risk." During the meeting, the information technology secretary at the TSE, Julio Valente, put forward a list of requests the court believes will disinformation. Over 33,000 people sent out over 1,000 doxxing messages in the group. Although the administrators tried to delete all of the messages, the posting speed was far too much for them to keep up. 4How to customize a Telegram channel? The SUCK Channel on Telegram, with a message saying some content has been removed by the police. Photo: Telegram screenshot.
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American