❓Как обнаружить и смягчить эффект популярности (popularity bias) в рекомендательной системе
Алгоритмы рекомендаций часто усиливают популярность уже популярных видео — их всё чаще показывают, в то время как новые или нишевые остаются незамеченными. Это создает эффект «богатые становятся богаче».
🔍 Как обнаружить
Посмотрите на логи рекомендаций — если небольшая доля контента получает основную массу показов, это тревожный сигнал. Обычно это «голова» распределения (head), тогда как «хвост» (long tail) игнорируется.
🛠Методы смягчения
• Нормализация метрик (например, watch-time) с учетом числа показов — чтобы не усиливать положительную обратную связь.
• Поддержка длинного хвоста: в механизме отбора кандидатов добавить специальную логику, продвигающую менее популярные видео.
• Умное переупорядочивание (re-ranking): резервировать часть позиций в выдаче для менее популярных видео.
⚠️Важно
• Слишком сильное наказание популярных видео может снизить удовлетворенность пользователя.
• Нельзя наказывать все тематики одинаково: специализированный контент может иметь честно низкие метрики, не из-за предвзятости, а из-за ниши.
❓Как обнаружить и смягчить эффект популярности (popularity bias) в рекомендательной системе
Алгоритмы рекомендаций часто усиливают популярность уже популярных видео — их всё чаще показывают, в то время как новые или нишевые остаются незамеченными. Это создает эффект «богатые становятся богаче».
🔍 Как обнаружить
Посмотрите на логи рекомендаций — если небольшая доля контента получает основную массу показов, это тревожный сигнал. Обычно это «голова» распределения (head), тогда как «хвост» (long tail) игнорируется.
🛠Методы смягчения
• Нормализация метрик (например, watch-time) с учетом числа показов — чтобы не усиливать положительную обратную связь.
• Поддержка длинного хвоста: в механизме отбора кандидатов добавить специальную логику, продвигающую менее популярные видео.
• Умное переупорядочивание (re-ranking): резервировать часть позиций в выдаче для менее популярных видео.
⚠️Важно
• Слишком сильное наказание популярных видео может снизить удовлетворенность пользователя.
• Нельзя наказывать все тематики одинаково: специализированный контент может иметь честно низкие метрики, не из-за предвзятости, а из-за ниши.
As of Thursday, the SUCK Channel had 34,146 subscribers, with only one message dated August 28, 2020. It was an announcement stating that police had removed all posts on the channel because its content “contravenes the laws of Hong Kong.” Other crimes that the SUCK Channel incited under Ng’s watch included using corrosive chemicals to make explosives and causing grievous bodily harm with intent. The court also found Ng responsible for calling on people to assist protesters who clashed violently with police at several universities in November 2019. Ng was convicted in April for conspiracy to incite a riot, public nuisance, arson, criminal damage, manufacturing of explosives, administering poison and wounding with intent to do grievous bodily harm between October 2019 and June 2020. With the “Bear Market Screaming Therapy Group,” we’ve now transcended language. How to create a business channel on Telegram? (Tutorial)
from us