DS_INTERVIEW_LIB Telegram 950
Как PCA работает с пропущенными значениями в данных

Метод главных компонент (PCA) сам по себе не умеет обрабатывать пропущенные значенияему нужны полные строки данных для вычисления ковариационной матрицы или проведения SVD.

Однако есть несколько способов обойти это ограничение:

🔹 Удаление неполных строк (listwise deletion): самый простой вариант — убрать все строки с пропущенными значениями. Но это может сильно сократить объем данных и исказить результат, особенно если данные пропущены не случайно.

🔹 Импутация: замена пропусков на среднее, медиану, значения ближайших соседей (KNN) или с помощью более сложных статистических моделей. После этого можно применять стандартный PCA. Качество результата сильно зависит от точности импутации.

🔹 Expectation-Maximization PCA: специальная итеративная техника, которая попеременно оценивает пропущенные значения и обновляет компоненты PCA. Этот метод сложнее, но может дать более точные результаты, чем обычная импутация.

🔹 Robust PCA / матричное дополнение: альтернативные методы, подходящие для больших и структурированных наборов данных. Они способны восстанавливать недостающие элементы с сохранением низкоранговой структуры, аналогичной PCA.

⚠️ Важно: любой из этих подходов может внести искажения. Если пропущено слишком много данных, или пропуски носят систематический характер, то результат PCA может быть некорректным.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tgoop.com/ds_interview_lib/950
Create:
Last Update:

Как PCA работает с пропущенными значениями в данных

Метод главных компонент (PCA) сам по себе не умеет обрабатывать пропущенные значенияему нужны полные строки данных для вычисления ковариационной матрицы или проведения SVD.

Однако есть несколько способов обойти это ограничение:

🔹 Удаление неполных строк (listwise deletion): самый простой вариант — убрать все строки с пропущенными значениями. Но это может сильно сократить объем данных и исказить результат, особенно если данные пропущены не случайно.

🔹 Импутация: замена пропусков на среднее, медиану, значения ближайших соседей (KNN) или с помощью более сложных статистических моделей. После этого можно применять стандартный PCA. Качество результата сильно зависит от точности импутации.

🔹 Expectation-Maximization PCA: специальная итеративная техника, которая попеременно оценивает пропущенные значения и обновляет компоненты PCA. Этот метод сложнее, но может дать более точные результаты, чем обычная импутация.

🔹 Robust PCA / матричное дополнение: альтернативные методы, подходящие для больших и структурированных наборов данных. Они способны восстанавливать недостающие элементы с сохранением низкоранговой структуры, аналогичной PCA.

⚠️ Важно: любой из этих подходов может внести искажения. Если пропущено слишком много данных, или пропуски носят систематический характер, то результат PCA может быть некорректным.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/950

View MORE
Open in Telegram


Telegram News

Date: |

With the sharp downturn in the crypto market, yelling has become a coping mechanism for many crypto traders. This screaming therapy became popular after the surge of Goblintown Ethereum NFTs at the end of May or early June. Here, holders made incoherent groaning sounds in late-night Twitter spaces. They also role-played as urine-loving Goblin creatures. Deputy District Judge Peter Hui sentenced computer technician Ng Man-ho on Thursday, a month after the 27-year-old, who ran a Telegram group called SUCK Channel, was found guilty of seven charges of conspiring to incite others to commit illegal acts during the 2019 extradition bill protests and subsequent months. More>> SUCK Channel Telegram
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American