DS_INTERVIEW_LIB Telegram 920
📌 Почему «логистическая регрессия» — это всё ещё регрессия, а не классификация

На первый взгляд, логистическая регрессия решает задачу классификации — ведь результатом часто становится 0 или 1. Но суть метода — в другом.

🔹 Что происходит на самом деле:

Модель вычисляет линейную комбинацию признаков, а затем пропускает её через сигмоиду — так получается число от 0 до 1, которое интерпретируется как вероятность принадлежности к положительному классу.

🔹 Почему это регрессия:

Потому что модель всё равно оптимизирует непрерывную функцию — отрицательное логарифмическое правдоподобие (log-loss), а не просто учится выбирать класс. Это приближает её к регрессионным методам: мы не просто «присваиваем» метку, а подгоняем параметры, как в классической регрессии.

🔹 А что насчёт классификации:

Классификацию мы получаем постфактум — когда применяем порог (обычно 0.5) к предсказанной вероятности.

⚠️ Главное — не путать внешний вид (0 или 1) с внутренней механикой. Логистическая регрессия — это регрессия, просто на логарифме вероятностей.

Библиотека собеса по Data Science



tgoop.com/ds_interview_lib/920
Create:
Last Update:

📌 Почему «логистическая регрессия» — это всё ещё регрессия, а не классификация

На первый взгляд, логистическая регрессия решает задачу классификации — ведь результатом часто становится 0 или 1. Но суть метода — в другом.

🔹 Что происходит на самом деле:

Модель вычисляет линейную комбинацию признаков, а затем пропускает её через сигмоиду — так получается число от 0 до 1, которое интерпретируется как вероятность принадлежности к положительному классу.

🔹 Почему это регрессия:

Потому что модель всё равно оптимизирует непрерывную функцию — отрицательное логарифмическое правдоподобие (log-loss), а не просто учится выбирать класс. Это приближает её к регрессионным методам: мы не просто «присваиваем» метку, а подгоняем параметры, как в классической регрессии.

🔹 А что насчёт классификации:

Классификацию мы получаем постфактум — когда применяем порог (обычно 0.5) к предсказанной вероятности.

⚠️ Главное — не путать внешний вид (0 или 1) с внутренней механикой. Логистическая регрессия — это регрессия, просто на логарифме вероятностей.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/920

View MORE
Open in Telegram


Telegram News

Date: |

ZDNET RECOMMENDS 5Telegram Channel avatar size/dimensions Matt Hussey, editorial director at NEAR Protocol also responded to this news with “#meIRL”. Just as you search “Bear Market Screaming” in Telegram, you will see a Pepe frog yelling as the group’s featured image. “Hey degen, are you stressed? Just let it all out,” he wrote, along with a link to join the group. To view your bio, click the Menu icon and select “View channel info.”
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American