DS_INTERVIEW_LIB Telegram 916
🧠 Градиентный спуск: когда сходимость гарантирована, а когда — нет

В линейной регрессии с функцией потерь в виде среднеквадратичной ошибки (MSE) задача выпуклая — это значит, что существует единственный глобальный минимум, и градиентный спуск (если не мешают численные ошибки) гарантированно к нему сойдётся.

🔁 Если расширить линейную регрессию, применяя нелинейные преобразования (например, полиномиальные признаки), или перейти к глубоким нейросетям, ситуация меняется: поверхность функции потерь становится невыпуклой, появляются локальные минимумы и седловые точки.

📉 В таких случаях градиентный спуск может:
▪️ сойтись к локальному минимуму
▪️ застрять на плато (участке с малыми градиентами)
▪️ не достичь глобального оптимума

💡 Что помогает:
▪️ оптимизаторы с моментумом (например, Adam, RMSProp)
▪️ адаптивное изменение learning rate
▪️ периодический «рестарт» обучения

⚠️ Подводный камень:

Можно ошибочно считать, что градиентный спуск всегда работает, как в линейной регрессии. Но в невыпуклых задачах сходимость к глобальному минимуму не гарантируется.

Библиотека собеса по Data Science



tgoop.com/ds_interview_lib/916
Create:
Last Update:

🧠 Градиентный спуск: когда сходимость гарантирована, а когда — нет

В линейной регрессии с функцией потерь в виде среднеквадратичной ошибки (MSE) задача выпуклая — это значит, что существует единственный глобальный минимум, и градиентный спуск (если не мешают численные ошибки) гарантированно к нему сойдётся.

🔁 Если расширить линейную регрессию, применяя нелинейные преобразования (например, полиномиальные признаки), или перейти к глубоким нейросетям, ситуация меняется: поверхность функции потерь становится невыпуклой, появляются локальные минимумы и седловые точки.

📉 В таких случаях градиентный спуск может:
▪️ сойтись к локальному минимуму
▪️ застрять на плато (участке с малыми градиентами)
▪️ не достичь глобального оптимума

💡 Что помогает:
▪️ оптимизаторы с моментумом (например, Adam, RMSProp)
▪️ адаптивное изменение learning rate
▪️ периодический «рестарт» обучения

⚠️ Подводный камень:

Можно ошибочно считать, что градиентный спуск всегда работает, как в линейной регрессии. Но в невыпуклых задачах сходимость к глобальному минимуму не гарантируется.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/916

View MORE
Open in Telegram


Telegram News

Date: |

It’s easy to create a Telegram channel via desktop app or mobile app (for Android and iOS): Public channels are public to the internet, regardless of whether or not they are subscribed. A public channel is displayed in search results and has a short address (link). Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.” How to build a private or public channel on Telegram? The main design elements of your Telegram channel include a name, bio (brief description), and avatar. Your bio should be:
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American