DS_INTERVIEW_LIB Telegram 912
Какие компромиссы при выборе более сложной модели для маленького, но чистого датасета, versus более простой модели для большого, но шумного датасета

▪️ Сложная модель на маленьком, но качественном датасете:
— Может лучше обобщать, если шум минимален, потому что на таком датасете модель фокусируется на сильных, стабильных паттернах.
— Однако, сложные модели могут переобучаться при недостаточном объеме данных, особенно если выборка не отражает всю разнообразие распределения данных.

▪️ Простая модель на большом, шумном датасете:
— Простая модель может быть более устойчивой к выбросам и случайному шуму, если данных достаточно, чтобы сгладить несоответствия.
— Если шум не слишком велик, то большой датасет может позволить модели выявить общие тенденции, несмотря на неточности.

▪️ Подводные камни и крайние случаи:
— Несоответствие между емкостью модели и размером данных: сложная модель может запомнить маленькие подмножества данных, не научившись обобщать.

— Чрезмерное упрощение при сильном шуме: если датасет слишком шумный и при этом используется простая модель, можно недообучиться, упустив важные детали.

— Сдвиги в распределении данных: сложная модель может случайно выучить артефакты, которые встречаются только в маленькой выборке, в то время как простая модель на большом датасете может схватывать более обобщенные особенности.

Библиотека собеса по Data Science



tgoop.com/ds_interview_lib/912
Create:
Last Update:

Какие компромиссы при выборе более сложной модели для маленького, но чистого датасета, versus более простой модели для большого, но шумного датасета

▪️ Сложная модель на маленьком, но качественном датасете:
— Может лучше обобщать, если шум минимален, потому что на таком датасете модель фокусируется на сильных, стабильных паттернах.
— Однако, сложные модели могут переобучаться при недостаточном объеме данных, особенно если выборка не отражает всю разнообразие распределения данных.

▪️ Простая модель на большом, шумном датасете:
— Простая модель может быть более устойчивой к выбросам и случайному шуму, если данных достаточно, чтобы сгладить несоответствия.
— Если шум не слишком велик, то большой датасет может позволить модели выявить общие тенденции, несмотря на неточности.

▪️ Подводные камни и крайние случаи:
— Несоответствие между емкостью модели и размером данных: сложная модель может запомнить маленькие подмножества данных, не научившись обобщать.

— Чрезмерное упрощение при сильном шуме: если датасет слишком шумный и при этом используется простая модель, можно недообучиться, упустив важные детали.

— Сдвиги в распределении данных: сложная модель может случайно выучить артефакты, которые встречаются только в маленькой выборке, в то время как простая модель на большом датасете может схватывать более обобщенные особенности.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/912

View MORE
Open in Telegram


Telegram News

Date: |

“[The defendant] could not shift his criminal liability,” Hui said. The Channel name and bio must be no more than 255 characters long Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram. To delete a channel with over 1,000 subscribers, you need to contact user support Add up to 50 administrators
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American