DS_INTERVIEW_LIB Telegram 520
Как выбрать порог для модели классификации?

Выбор порога для модели классификации зависит от конкретной задачи. Можно перечислить следующие используемые методы:

▪️Самое простое решение — взять в качестве порогового значения 0.5. Это будет означать, что если вероятность принадлежности объекта к положительному классу выше 50%, то объект будет классифицирован как положительный.

▪️Использовать ROC-кривую (Receiver Operating Characteristic) и значение AUC (Area Under the Curve), чтобы выбрать порог, который оптимизирует соотношение между истинно положительными и ложноположительными результатами.

▪️Оптимизировать порог на основе Precision-Recall кривой. Это особенно полезно для несбалансированных наборов данных, где важен баланс между точностью (Precision) и полнотой (Recall).

▪️Рассмотреть специфические бизнес-требования и контекст задачи. Например, в задачах медицинской диагностики может быть важно минимизировать ложноотрицательные результаты, а в задачах обнаружения мошенничества — ложноположительные.

▪️Проводить тестирование на валидационной выборке, чтобы понять, как различные пороги влияют на производительность модели в условиях, близких к реальным.

#машинное_обучение
👍12🥰3



tgoop.com/ds_interview_lib/520
Create:
Last Update:

Как выбрать порог для модели классификации?

Выбор порога для модели классификации зависит от конкретной задачи. Можно перечислить следующие используемые методы:

▪️Самое простое решение — взять в качестве порогового значения 0.5. Это будет означать, что если вероятность принадлежности объекта к положительному классу выше 50%, то объект будет классифицирован как положительный.

▪️Использовать ROC-кривую (Receiver Operating Characteristic) и значение AUC (Area Under the Curve), чтобы выбрать порог, который оптимизирует соотношение между истинно положительными и ложноположительными результатами.

▪️Оптимизировать порог на основе Precision-Recall кривой. Это особенно полезно для несбалансированных наборов данных, где важен баланс между точностью (Precision) и полнотой (Recall).

▪️Рассмотреть специфические бизнес-требования и контекст задачи. Например, в задачах медицинской диагностики может быть важно минимизировать ложноотрицательные результаты, а в задачах обнаружения мошенничества — ложноположительные.

▪️Проводить тестирование на валидационной выборке, чтобы понять, как различные пороги влияют на производительность модели в условиях, близких к реальным.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/520

View MORE
Open in Telegram


Telegram News

Date: |

Invite up to 200 users from your contacts to join your channel A Hong Kong protester with a petrol bomb. File photo: Dylan Hollingsworth/HKFP. ZDNET RECOMMENDS Channel login must contain 5-32 characters 1What is Telegram Channels?
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American