✅Как проводить надёжный feature engineering, чтобы простая модель могла захватывать ключевые зависимости в данныхДля простых моделей, таких как линейная регрессия или логистическая регрессия, feature engineering играет критическую роль — он позволяет модели отражать сложные зависимости, не усложняя архитектуру.
🈁 Добавляйте нелинейные преобразования. Полиномиальные признаки (например, квадраты, произведения ключевых признаков) помогают модели уловить умеренные нелинейности, сохраняя интерпретируемость.
🈁 Используйте знания предметной области. Часто доменные соотношения (например, отношение marketing_spend / number_of_website_visits) оказываются гораздо информативнее исходных признаков.
🈁 Применяйте масштабирование признаков. Для линейных моделей полезно стандартизировать данные (вычитание среднего, деление на стандартное отклонение) — это ускоряет сходимость и делает веса более сопоставимыми.
🈁 Контролируйте количество и корреляцию признаков. Избыточное количество искусственно созданных признаков может привести к переобучению или мультиколлинеарности, усложняя интерпретацию.
🈁 Используйте регуляризацию. Методы L1 или L2 помогут “заглушить” неинформативные признаки, сохранив важные.
🈁 Проверяйте качество на кросс-валидации. Каждый новый признак нужно оценивать по реальному вкладу в качество модели, особенно при временных данных — с использованием out-of-time проверки.
🐸 Библиотека собеса по Data Science