Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/ds_interview_lib/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
Библиотека собеса по Data Science | вопросы с собеседований@ds_interview_lib P.1066
DS_INTERVIEW_LIB Telegram 1066
👉 Почему в задачах с имбалансом классов часто возникает проблема маскировки (masking) при обучении, и как с ней бороться

Маскировка — ситуация, когда модель «игнорирует» редкий класс из-за его малого веса в общей выборке и концентрируется на частом классе, что приводит к плохому распознаванию редких событий.

Почему возникает:
➡️ Стандартные функции потерь (например, cross-entropy) суммируют ошибки по всем объектам без учёта дисбаланса. Большой класс «перекрывает» вклад маленького, и градиенты, связанные с редким классом, оказываются незначительными.

➡️ При классическом обучении модель «ленится» выделять сложные и редкие паттерны, так как проще минимизировать ошибку на доминирующем классе.

Как бороться:
➡️ Взвешивание классов — увеличить вес ошибки на редком классе в функции потерь.
➡️ Использование специализированных функций потерь, например, focal loss, которая уменьшает вклад легко классифицируемых объектов и фокусируется на трудных.
➡️ Семплирование: oversampling редких классов или undersampling частых, чтобы выровнять распределение.
➡️ Генерация синтетических данных (SMOTE, ADASYN) для редких классов.
➡️ Использование ансамблей, где отдельные модели могут специализироваться на редких классах.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
2



tgoop.com/ds_interview_lib/1066
Create:
Last Update:

👉 Почему в задачах с имбалансом классов часто возникает проблема маскировки (masking) при обучении, и как с ней бороться

Маскировка — ситуация, когда модель «игнорирует» редкий класс из-за его малого веса в общей выборке и концентрируется на частом классе, что приводит к плохому распознаванию редких событий.

Почему возникает:
➡️ Стандартные функции потерь (например, cross-entropy) суммируют ошибки по всем объектам без учёта дисбаланса. Большой класс «перекрывает» вклад маленького, и градиенты, связанные с редким классом, оказываются незначительными.

➡️ При классическом обучении модель «ленится» выделять сложные и редкие паттерны, так как проще минимизировать ошибку на доминирующем классе.

Как бороться:
➡️ Взвешивание классов — увеличить вес ошибки на редком классе в функции потерь.
➡️ Использование специализированных функций потерь, например, focal loss, которая уменьшает вклад легко классифицируемых объектов и фокусируется на трудных.
➡️ Семплирование: oversampling редких классов или undersampling частых, чтобы выровнять распределение.
➡️ Генерация синтетических данных (SMOTE, ADASYN) для редких классов.
➡️ Использование ансамблей, где отдельные модели могут специализироваться на редких классах.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Share with your friend now:
tgoop.com/ds_interview_lib/1066

View MORE
Open in Telegram


Telegram News

Date: |

2How to set up a Telegram channel? (A step-by-step tutorial) Telegram iOS app: In the “Chats” tab, click the new message icon in the right upper corner. Select “New Channel.” Other crimes that the SUCK Channel incited under Ng’s watch included using corrosive chemicals to make explosives and causing grievous bodily harm with intent. The court also found Ng responsible for calling on people to assist protesters who clashed violently with police at several universities in November 2019. With the administration mulling over limiting access to doxxing groups, a prominent Telegram doxxing group apparently went on a "revenge spree." Add the logo from your device. Adjust the visible area of your image. Congratulations! Now your Telegram channel has a face Click “Save”.!
from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM American