Warning: file_put_contents(aCache/aDaily/post/dlinnlp/-1744-1745-1746-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
DL in NLP@dlinnlp P.1745
DLINNLP Telegram 1745
Early Weight Averaging meets High Learning Rates for LLM Pre-training
Sanyal et al., [UT Austin]
arxiv.org/abs/2306.03241

Исследования того а что будет если мы просто усредним несколько моделей всегда были слегка безумной, но очень эффективной идеей улучшения качества моделей. В этой статье авторы показывают что это можно делать не только с финальными чекпоинтами, но и во время тренировки.

Авторы предлагают алгоритм LAWA (LAtest Weight Averaging) который выглядит так:
1. В начале тренируемся как обычно, сохраняем чекпоинты модели каждые N~1000 итераций
2. Когда мы достигаем update_step % N == 0, берём последние M~10 чекпоинтов и усредняем их, заменяем веса модели
3. Продолжаем тренироваться

Метод очень похож на EMA, но тут мы выполняем его не только для тестирования модели, но и для тренировки.

Интересные моменты: оптимальный lr для LAWA заметно выше чем оптимальный lr для обычной тренировки, а также LAWA позволяет избежать нестабильностей лосса когда он внезапно взрывается 🔥

В конце хотелось бы ещё сказать про подробности экспериментов. Порог входа в рисёч предтренировки это ~8xA100. Но есть альтернатива: Pythia и LLM360 зарелизили не только финальный чекпоинт, но и чекпоинты каждую 1000 итераций, а также порядок данных. Это означает что вы можете "вклиниться" со своим методом в середину тренировки и проверить как он работает в начале/середине/конце обучения. Это относительно дешево и так и были проведены большинство экспериментов.
👍43🔥16🤔53🤯2🗿1



tgoop.com/dlinnlp/1745
Create:
Last Update:

Early Weight Averaging meets High Learning Rates for LLM Pre-training
Sanyal et al., [UT Austin]
arxiv.org/abs/2306.03241

Исследования того а что будет если мы просто усредним несколько моделей всегда были слегка безумной, но очень эффективной идеей улучшения качества моделей. В этой статье авторы показывают что это можно делать не только с финальными чекпоинтами, но и во время тренировки.

Авторы предлагают алгоритм LAWA (LAtest Weight Averaging) который выглядит так:
1. В начале тренируемся как обычно, сохраняем чекпоинты модели каждые N~1000 итераций
2. Когда мы достигаем update_step % N == 0, берём последние M~10 чекпоинтов и усредняем их, заменяем веса модели
3. Продолжаем тренироваться

Метод очень похож на EMA, но тут мы выполняем его не только для тестирования модели, но и для тренировки.

Интересные моменты: оптимальный lr для LAWA заметно выше чем оптимальный lr для обычной тренировки, а также LAWA позволяет избежать нестабильностей лосса когда он внезапно взрывается 🔥

В конце хотелось бы ещё сказать про подробности экспериментов. Порог входа в рисёч предтренировки это ~8xA100. Но есть альтернатива: Pythia и LLM360 зарелизили не только финальный чекпоинт, но и чекпоинты каждую 1000 итераций, а также порядок данных. Это означает что вы можете "вклиниться" со своим методом в середину тренировки и проверить как он работает в начале/середине/конце обучения. Это относительно дешево и так и были проведены большинство экспериментов.

BY DL in NLP






Share with your friend now:
tgoop.com/dlinnlp/1745

View MORE
Open in Telegram


Telegram News

Date: |

There have been several contributions to the group with members posting voice notes of screaming, yelling, groaning, and wailing in different rhythms and pitches. Calling out the “degenerate” community or the crypto obsessives that engage in high-risk trading, Co-founder of NFT renting protocol Rentable World emiliano.eth shared this group on his Twitter. He wrote: “hey degen, are you stressed? Just let it out all out. Voice only tg channel for screaming”. With the sharp downturn in the crypto market, yelling has become a coping mechanism for many crypto traders. This screaming therapy became popular after the surge of Goblintown Ethereum NFTs at the end of May or early June. Here, holders made incoherent groaning sounds in late-night Twitter spaces. They also role-played as urine-loving Goblin creatures. Among the requests, the Brazilian electoral Court wanted to know if they could obtain data on the origins of malicious content posted on the platform. According to the TSE, this would enable the authorities to track false content and identify the user responsible for publishing it in the first place. Joined by Telegram's representative in Brazil, Alan Campos, Perekopsky noted the platform was unable to cater to some of the TSE requests due to the company's operational setup. But Perekopsky added that these requests could be studied for future implementation. Telegram message that reads: "Bear Market Screaming Therapy Group. You are only allowed to send screaming voice notes. Everything else = BAN. Text pics, videos, stickers, gif = BAN. Anything other than screaming = BAN. You think you are smart = BAN.
from us


Telegram DL in NLP
FROM American