tgoop.com/dlinnlp/1721
Last Update:
NeurIPS 2023 posters (day 0, 1, and 2)
На нулевом дне NeurIPS я был на конференции-спутнике NeurIPS: ML4Health. Я немного занимался medical NLP вместе с MIT/Harvard и знакомые позвали меня поучаствовать в research roundtable как junior chair (извиняюсь я не знаю как это переводить).
Вот пара интересных статей с ML4Health:
1. MedAlign: A Clinician-Generated Dataset for Instruction Following with Electronic Medical Records (arxiv)
1. A Multimodal Dataset of 21,412 Recorded Nights for Sleep and Respiratory Research (arxiv)
1. Multimodal in-context learning enables rationale generation (aka MedFlamingo) (arxiv)
А теперь поток статей с NeurIPS:
1. Трансформеры в начале учат эмбеддинги под равномерным attention, после чего уже учат attention (arxiv)
1. Explainability at scale: сделали новый метод объяснения нейросетей и попробовали на Alpaca-7B. Смогли интерпретировать что для промпта "Please say yes only if it costs between [X.XX] and [X.XX] dollars, otherwise no" модель использует конкретный (и очень простой) алгоритм который можно увидеть на одной из картинок (arxiv)
1. То где в трансформере находится информация на удивление никак не связано с тем какие слои надо корректировать для knowledge editing (arxiv)
1. MLM отлично заходит для мультимодального предобучения (картинки, аудио, видео) даже если вы используете просто L2 лосс. Всё что вам нужно это скейлинг (arxiv)
1. Mathematical Capabilities of ChatGPT (arxiv)
1. Можно делать мультимодальные модели из кучи одномодальных без тренировки. Всё что надо это немного пар (базисных) данных из разных модальностей. Идея: строить фичи на основе схожести к вашим базисным данным (arxiv)
1. Трансформеры тренируются постепенно повышая ранк KQ^T. Эта статья очень зацепила тк частично доказывает мою гипотезу что нейросетки тренируются locally-low rank, и больше мотивируют то что ReLoRA – это правильный подход для тренировки нейросетей. (arxiv)
(Из-за лимита символов картинки будут в следующем посте)
BY DL in NLP

Share with your friend now:
tgoop.com/dlinnlp/1721