Warning: mkdir(): No space left on device in /var/www/tgoop/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/deepinterest/--): Failed to open stream: No such file or directory in /var/www/tgoop/post.php on line 50
Эпицентр знаний@deepinterest P.1569
DEEPINTEREST Telegram 1569
🧠 Распространенные заблуждения о квантовой механике в популярной научной фантастике

🚀 Одно из самых распространенных заблуждений касается квантовой запутанности. Она часто используется как сюжетный прием, например, в известном романе "Проблема трех тел", где запутанные квантовые системы используются для мгновенной связи на межзвездные расстояния. Хотя это замечательный сюжетный прием, он не имеет оснований в реальности. Квантовая запутанность действительно означает корреляцию между удаленными наблюдениями, но она определенно не позволяет осуществлять связь. Никакая информация или энергия не передается от одного наблюдательного места к другому.

🔍 Еще одно распространенное заблуждение касается интерпретации принципа неопределенности как ошибки измерения. Эта интерпретация восходит к Гейзенбергу, который впервые представил принцип неопределенности как следствие того, что акт измерения неизбежно нарушает измеряемую систему. Однако принцип неопределенности гораздо более фундаментален. Дело не в нашей неспособности измерить существующее свойство: скорее, само свойство не существует как классическое число до тех пор, пока квантовая система не будет ограничена измерением.

🧪 К этому closely related are interpretations of the act of measurement itself, and not just in science-fiction, but even in the professional literature.
Квантовая система может находиться в комбинации многих возможных состояний до тех пор, пока это не произойдет: измерение ограничивает свойство до конкретного значения.

В интерпретации Копенгагена квантовой механики акт измерения является deus ex machina, который, выходя за пределы уравнения Шредингера, которое управляет эволюцией системы, каким-то образом изменяет ее волновую функцию "неединичным" образом.

💻 Что касается второго места, я чувствую необходимость упомянуть квантовые компьютеры, которые иногда представляются как превосходящие традиционные компьютеры.
Они не являются таковыми, далеко не таковыми.

Предполагая, что масштабируемые квантовые вычисления станут реальностью в какой-то момент в будущем (в настоящее время это не так, и есть скептики - я признаю, что я один из них - которые считают, что могут быть фундаментальные препятствия, которые делают масштабируемые квантовые вычисления невозможными), их преимущество перед цифровыми компьютерами заключается в том, что они эффективно являются аналоговыми компьютерами с коррекцией ошибок.

🧮 Как я часто упоминал, квантовая физика не может быть интуитивно понятна. Она описывает мир (мир физических систем с небольшим количеством некоррелированных степеней свободы), который работает очень иначе, чем наш повседневный опыт.
Элементарная частица не является миниатюрной пушечной ядрой, и не является невидимой волной. Она... ну, возбуждение квантового поля, но, конечно, это действительно ничего не значит с точки зрения интуиции.

Чтобы понять квантовую реальность, нам нужна математика.



tgoop.com/deepinterest/1569
Create:
Last Update:

🧠 Распространенные заблуждения о квантовой механике в популярной научной фантастике

🚀 Одно из самых распространенных заблуждений касается квантовой запутанности. Она часто используется как сюжетный прием, например, в известном романе "Проблема трех тел", где запутанные квантовые системы используются для мгновенной связи на межзвездные расстояния. Хотя это замечательный сюжетный прием, он не имеет оснований в реальности. Квантовая запутанность действительно означает корреляцию между удаленными наблюдениями, но она определенно не позволяет осуществлять связь. Никакая информация или энергия не передается от одного наблюдательного места к другому.

🔍 Еще одно распространенное заблуждение касается интерпретации принципа неопределенности как ошибки измерения. Эта интерпретация восходит к Гейзенбергу, который впервые представил принцип неопределенности как следствие того, что акт измерения неизбежно нарушает измеряемую систему. Однако принцип неопределенности гораздо более фундаментален. Дело не в нашей неспособности измерить существующее свойство: скорее, само свойство не существует как классическое число до тех пор, пока квантовая система не будет ограничена измерением.

🧪 К этому closely related are interpretations of the act of measurement itself, and not just in science-fiction, but even in the professional literature.

Квантовая система может находиться в комбинации многих возможных состояний до тех пор, пока это не произойдет: измерение ограничивает свойство до конкретного значения.

В интерпретации Копенгагена квантовой механики акт измерения является deus ex machina, который, выходя за пределы уравнения Шредингера, которое управляет эволюцией системы, каким-то образом изменяет ее волновую функцию "неединичным" образом.

💻 Что касается второго места, я чувствую необходимость упомянуть квантовые компьютеры, которые иногда представляются как превосходящие традиционные компьютеры.
Они не являются таковыми, далеко не таковыми.

Предполагая, что масштабируемые квантовые вычисления станут реальностью в какой-то момент в будущем (в настоящее время это не так, и есть скептики - я признаю, что я один из них - которые считают, что могут быть фундаментальные препятствия, которые делают масштабируемые квантовые вычисления невозможными), их преимущество перед цифровыми компьютерами заключается в том, что они эффективно являются аналоговыми компьютерами с коррекцией ошибок.

🧮 Как я часто упоминал, квантовая физика не может быть интуитивно понятна. Она описывает мир (мир физических систем с небольшим количеством некоррелированных степеней свободы), который работает очень иначе, чем наш повседневный опыт.
Элементарная частица не является миниатюрной пушечной ядрой, и не является невидимой волной. Она... ну, возбуждение квантового поля, но, конечно, это действительно ничего не значит с точки зрения интуиции.

Чтобы понять квантовую реальность, нам нужна математика.

BY Эпицентр знаний




Share with your friend now:
tgoop.com/deepinterest/1569

View MORE
Open in Telegram


Telegram News

Date: |

Just at this time, Bitcoin and the broader crypto market have dropped to new 2022 lows. The Bitcoin price has tanked 10 percent dropping to $20,000. On the other hand, the altcoin space is witnessing even more brutal correction. Bitcoin has dropped nearly 60 percent year-to-date and more than 70 percent since its all-time high in November 2021. How to build a private or public channel on Telegram? Members can post their voice notes of themselves screaming. Interestingly, the group doesn’t allow to post anything else which might lead to an instant ban. As of now, there are more than 330 members in the group. Joined by Telegram's representative in Brazil, Alan Campos, Perekopsky noted the platform was unable to cater to some of the TSE requests due to the company's operational setup. But Perekopsky added that these requests could be studied for future implementation. How to Create a Private or Public Channel on Telegram?
from us


Telegram Эпицентр знаний
FROM American