DAVRON_CODER Telegram 1340
Hurmatli junior dasturchilar, agar siz AI o‘rganishni endi boshlayotgan bo‘lsangiz, bugundan boshlab quyidagilarni o‘rganishga vaqt ajratsangiz, keyinchalik o‘zingizga rahmat aytasiz:

1. Python + Data Structures & Algorithms
Nega: Bu — AI’da hamma narsa qurilgan til va mantiq; buni bilmasangiz, boshqa joylarda qiynalasiz.

2. Math for ML (Linear Algebra, Probability, Stats)
Nega: Agar matematikani tushunmasangiz, AI modellari qanday ishlashini yoki ularni qanday yaxshilashni ham tushunolmaysiz.

3. Machine Learning (Classic Algorithms)
Nega: Har qanday AI roli sizdan ML asoslarini bilishingizni kutadi, hatto keyinchalik faqat LLM’lar bilan ishlasangiz ham.

4. Deep Learning & Neural Networks
Nega: Bu — hozirgi “AI”ning yuragi, Computer Vision-dan tortib LLM’larga qadar hammasi shunga asoslangan.

5. LLMs (Large Language Models)
Nega: LLM’lar ChatGPT, Claude, Gemini va aksariyat yangi AI mahsulotlarini quvvatlantiradi, bu sohaning ilg‘or qismi.

6. Prompt Engineering
Nega: LLM’lar bilan “gaplashishni” o‘rganish sizga 99% foydalanuvchilarga qaraganda ancha aniq va yaxshi natijalar beradi.

7. RAG (Retrieval-Augmented Generation)
Nega: Ma’lumotlaringizdan savollarga javob bera oladigan chatbot va yordamchilar yaratish — AI kelajagi.

8. AI Agents & Agentic Workflows
Nega: Haqiqiy dunyoda AI siz uchun ish qiladigan botlar jamoasi bo‘ladi, faqat bitta javob beradigan emas.

9. Data Engineering Basics
Nega: AI pipeline’ining 90% qismi ma’lumotlarni yig‘ish, tozalash va boshqarishga sarflanadi.

10. MLOps (Model Deployment & Monitoring)
Nega: Modellarni ishlab chiqish — boshlanishi, ularni ishlashini kuzatish esa haqiqiy qiymat yaratishdir.

11. Cloud Fundamentals (AWS, GCP, Azure)
Nega: Aksariyat AI loyihalari cloud’da ishlaydi; ularni qanday joylashtirish, masshtablash va kuzatishni bilish kerak.

12. Model Evaluation & Debugging
Nega: Faqat o‘lchab va muammolarni topib tuzatganingizdagina modellaringizni yaxshilashingiz mumkin.

13. Building AI APIs & Tools
Nega: Har bir jamoa mahsulotiga “AI funksiyalari” qo‘shishni xohlaydi, API yaratishni o‘rganing.

14. Reading AI Papers & Blogs (Stay Updated)
Nega: Bu soha har oy yangilanadi. Google, Meta, OpenAI va boshqalardan eng so‘nggi yangiliklarni kuzatishni o‘rganing.

Bir vaqtning o‘zida bitta mavzuga e’tibor qarating.
Erta boshlaganingiz uchun keyin o‘zingizga rahmat aytasiz, ko‘pchilik hatto birinchi qadamni ham qo‘ymaydi.

Muallif: Kartikey Kumar

PS: Original manbada faqat juniorlar uchun deyilibdi. Lekin bu bilimlarni o'rganish faqat juniorlar uchun emas balki hamma darajadagi dasturchilar uchun juda foydali bo'ladi. ✅

@Otabek_Kholmirzaev
2👍8đŸ”„332



tgoop.com/davron_coder/1340
Create:
Last Update:

Hurmatli junior dasturchilar, agar siz AI o‘rganishni endi boshlayotgan bo‘lsangiz, bugundan boshlab quyidagilarni o‘rganishga vaqt ajratsangiz, keyinchalik o‘zingizga rahmat aytasiz:

1. Python + Data Structures & Algorithms
Nega: Bu — AI’da hamma narsa qurilgan til va mantiq; buni bilmasangiz, boshqa joylarda qiynalasiz.

2. Math for ML (Linear Algebra, Probability, Stats)
Nega: Agar matematikani tushunmasangiz, AI modellari qanday ishlashini yoki ularni qanday yaxshilashni ham tushunolmaysiz.

3. Machine Learning (Classic Algorithms)
Nega: Har qanday AI roli sizdan ML asoslarini bilishingizni kutadi, hatto keyinchalik faqat LLM’lar bilan ishlasangiz ham.

4. Deep Learning & Neural Networks
Nega: Bu — hozirgi “AI”ning yuragi, Computer Vision-dan tortib LLM’larga qadar hammasi shunga asoslangan.

5. LLMs (Large Language Models)
Nega: LLM’lar ChatGPT, Claude, Gemini va aksariyat yangi AI mahsulotlarini quvvatlantiradi, bu sohaning ilg‘or qismi.

6. Prompt Engineering
Nega: LLM’lar bilan “gaplashishni” o‘rganish sizga 99% foydalanuvchilarga qaraganda ancha aniq va yaxshi natijalar beradi.

7. RAG (Retrieval-Augmented Generation)
Nega: Ma’lumotlaringizdan savollarga javob bera oladigan chatbot va yordamchilar yaratish — AI kelajagi.

8. AI Agents & Agentic Workflows
Nega: Haqiqiy dunyoda AI siz uchun ish qiladigan botlar jamoasi bo‘ladi, faqat bitta javob beradigan emas.

9. Data Engineering Basics
Nega: AI pipeline’ining 90% qismi ma’lumotlarni yig‘ish, tozalash va boshqarishga sarflanadi.

10. MLOps (Model Deployment & Monitoring)
Nega: Modellarni ishlab chiqish — boshlanishi, ularni ishlashini kuzatish esa haqiqiy qiymat yaratishdir.

11. Cloud Fundamentals (AWS, GCP, Azure)
Nega: Aksariyat AI loyihalari cloud’da ishlaydi; ularni qanday joylashtirish, masshtablash va kuzatishni bilish kerak.

12. Model Evaluation & Debugging
Nega: Faqat o‘lchab va muammolarni topib tuzatganingizdagina modellaringizni yaxshilashingiz mumkin.

13. Building AI APIs & Tools
Nega: Har bir jamoa mahsulotiga “AI funksiyalari” qo‘shishni xohlaydi, API yaratishni o‘rganing.

14. Reading AI Papers & Blogs (Stay Updated)
Nega: Bu soha har oy yangilanadi. Google, Meta, OpenAI va boshqalardan eng so‘nggi yangiliklarni kuzatishni o‘rganing.

Bir vaqtning o‘zida bitta mavzuga e’tibor qarating.
Erta boshlaganingiz uchun keyin o‘zingizga rahmat aytasiz, ko‘pchilik hatto birinchi qadamni ham qo‘ymaydi.

Muallif: Kartikey Kumar

PS: Original manbada faqat juniorlar uchun deyilibdi. Lekin bu bilimlarni o'rganish faqat juniorlar uchun emas balki hamma darajadagi dasturchilar uchun juda foydali bo'ladi. ✅

@Otabek_Kholmirzaev

BY Davronbek | SWE đŸȘ


Share with your friend now:
tgoop.com/davron_coder/1340

View MORE
Open in Telegram


Telegram News

Date: |

Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram. Deputy District Judge Peter Hui sentenced computer technician Ng Man-ho on Thursday, a month after the 27-year-old, who ran a Telegram group called SUCK Channel, was found guilty of seven charges of conspiring to incite others to commit illegal acts during the 2019 extradition bill protests and subsequent months. With the sharp downturn in the crypto market, yelling has become a coping mechanism for many crypto traders. This screaming therapy became popular after the surge of Goblintown Ethereum NFTs at the end of May or early June. Here, holders made incoherent groaning sounds in late-night Twitter spaces. They also role-played as urine-loving Goblin creatures. A new window will come up. Enter your channel name and bio. (See the character limits above.) Click “Create.” Joined by Telegram's representative in Brazil, Alan Campos, Perekopsky noted the platform was unable to cater to some of the TSE requests due to the company's operational setup. But Perekopsky added that these requests could be studied for future implementation.
from us


Telegram Davronbek | SWE đŸȘ
FROM American