Warning: file_put_contents(aCache/aDaily/post/data_secrets/-5964-5965-5966-5967-5964-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Data Secrets@data_secrets P.5967
DATA_SECRETS Telegram 5967
Итак, как же DeepSeek обучили открытую модель уровня o1? Разбираем тех.отчет по полочкам:

🔷 Первое и самое интересное: сразу после претрейна RL. Обычно за предобучением следует файнтюнинг вида <вопрос-ответ> на размеченных данных, но здесь сразу воткнули чистое обучение с подкреплением.

Базовая модель – DeepSeek-V3-Base. В качестве алгоритма RL традиционно для DeepSeek применяется GRPO, улучшенная версия PPO (очень подробно мы описывали этот алгоритм в нашей большой статье про DeepSeekMath). Отдельно поощряется формат, в котором модель помещает свои рассуждения внутри тегов <think> и </think>.

Уже на этом шаге после нескольких тысяч итераций точность на AIME скакнула с 15.6% до 71.0% (вау!). Итого, получается модель, обученная без разметки вообще – DeepSeek-R1-Zero.

🔷 Для DeepSeek-R1 процесс повторяется с небольшой разницей. Для R1-Zero мы использовали rule-based rewards, когда ответы проверяются только самой системой (например с помощью компилляторов), без внешних разметок. И хотя точность таким образом получается приличная, сами ответы читать сложно: в них смешиваются языки, нет форматирования и тд.

Поэтому в R1 в процесс обучения все-таки добавили разметку в виде готовых цепочек рассуждений. Данные брали из DeepSeek-R1-Zero и, видимо, o1 и улучшали вручную. На них модель дообучают, а затем их же применяют в RL, прикручивая сюда еще и rejection sampling (то есть отборные ответы прямо во время RL добавляются в обучающую дату).

Интересный факт: когда на этапе RL для R1 ввели правило "доля таргетного языка в ответе должна быть больше 0.95", качество немножко просело.

🔷 И, наконец, дистилляция! Тут в качестве базовых моделей брали Qwen и Llama, а учителем выступала R1. Из модельки насемплировали 800,000 примеров, на которых ванильно зафайнтюнили учеников (как работает дистилляция, читайте в нашей статье тут). Тут вообще не использовался RL, но в статье написано, что ученые хотят попробовать его применить.

И еще раз ссылка на полный текст: github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
Please open Telegram to view this post
VIEW IN TELEGRAM
15👍11032🔥16🤯6👌1



tgoop.com/data_secrets/5967
Create:
Last Update:

Итак, как же DeepSeek обучили открытую модель уровня o1? Разбираем тех.отчет по полочкам:

🔷 Первое и самое интересное: сразу после претрейна RL. Обычно за предобучением следует файнтюнинг вида <вопрос-ответ> на размеченных данных, но здесь сразу воткнули чистое обучение с подкреплением.

Базовая модель – DeepSeek-V3-Base. В качестве алгоритма RL традиционно для DeepSeek применяется GRPO, улучшенная версия PPO (очень подробно мы описывали этот алгоритм в нашей большой статье про DeepSeekMath). Отдельно поощряется формат, в котором модель помещает свои рассуждения внутри тегов <think> и </think>.

Уже на этом шаге после нескольких тысяч итераций точность на AIME скакнула с 15.6% до 71.0% (вау!). Итого, получается модель, обученная без разметки вообще – DeepSeek-R1-Zero.

🔷 Для DeepSeek-R1 процесс повторяется с небольшой разницей. Для R1-Zero мы использовали rule-based rewards, когда ответы проверяются только самой системой (например с помощью компилляторов), без внешних разметок. И хотя точность таким образом получается приличная, сами ответы читать сложно: в них смешиваются языки, нет форматирования и тд.

Поэтому в R1 в процесс обучения все-таки добавили разметку в виде готовых цепочек рассуждений. Данные брали из DeepSeek-R1-Zero и, видимо, o1 и улучшали вручную. На них модель дообучают, а затем их же применяют в RL, прикручивая сюда еще и rejection sampling (то есть отборные ответы прямо во время RL добавляются в обучающую дату).

Интересный факт: когда на этапе RL для R1 ввели правило "доля таргетного языка в ответе должна быть больше 0.95", качество немножко просело.

🔷 И, наконец, дистилляция! Тут в качестве базовых моделей брали Qwen и Llama, а учителем выступала R1. Из модельки насемплировали 800,000 примеров, на которых ванильно зафайнтюнили учеников (как работает дистилляция, читайте в нашей статье тут). Тут вообще не использовался RL, но в статье написано, что ученые хотят попробовать его применить.

И еще раз ссылка на полный текст: github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf

BY Data Secrets







Share with your friend now:
tgoop.com/data_secrets/5967

View MORE
Open in Telegram


Telegram News

Date: |

"Doxxing content is forbidden on Telegram and our moderators routinely remove such content from around the world," said a spokesman for the messaging app, Remi Vaughn. Step-by-step tutorial on desktop: To view your bio, click the Menu icon and select “View channel info.” Ng was convicted in April for conspiracy to incite a riot, public nuisance, arson, criminal damage, manufacturing of explosives, administering poison and wounding with intent to do grievous bodily harm between October 2019 and June 2020.
from us


Telegram Data Secrets
FROM American