tgoop.com/data_notes/160
Last Update:
#дипломный_проект
#data_preprocessing
Часть 1.
В уже далеком 2016 году, когда я учился на вечерке ВМК, я работал МЛ сервисным инженером: ремонтировал и апгрейдил инфузионные насосы. Это небольшие, но напичканные электроникой аппараты, которые используются для очень точного дозирования препаратов на длительном отрезке времени, т.е. делают этакий очень долгий “укол” каким-либо препаратом, например, вводят 1 мл препарата в течение суток с определенной скоростью. Я надеюсь, что вживую вы их никогда не видели и уж тем более вам не доводилось испытывать на себе их действие.
За 5 лет работы я переремонтировал более 1.5 тысяч аппаратов, поэтому прекрасно знал все особенности как поломок, так и клиентов, которыми являлись либо гос, либо частные клиники. В мои обязанности входило составление акта обследования неисправного аппарата, где указывались поломки, их причины, нужные для ремонта запчасти и итоговая стоимость. Акт высылался клиенту, а он уже либо соглашался на ремонт, либо отказывался, если цена слишком высока и проще купить новый аппарат. В случае согласия на ремонт я обращался в бухгалтерию для выставления счета на оплату, который отправлялся клиенту.
Так как отказы от ремонта были нередки из-за слишком высокой цены на ремонт, а за диагностику выбить деньги было очень непросто (косяки head of service engineering), то я подумал, что, задав всего несколько вопросов клиенту перед отправкой на диагностику, можно заранее оценить порядок стоимости ремонта и, если она будет довольно высокой, то сразу предупредить клиента, что ремонт нецелесообразен и проще купить новый аппарат. А если наоборот, предполагаемая цена будет низкой, можно сразу после диагностики идти просить выставить счет, чтобы не тратить время на ожидание согласования от клиента.
Так родилась идея первого моего проекта по анализу данных с применением ML.
BY Data notes
Share with your friend now:
tgoop.com/data_notes/160