Telegram Web
🔍 Что такое AssetGen 2.0?

AssetGen 2.0 — это новый фреймворк-от способный создавать высококачественные 3D-модели и текстуры на основе текстовых или визуальных запросов. Она объединяет два компонента:

- 3D-меши: создаются с использованием одностадийной диффузионной модели, обеспечивающей высокую детализацию и геометрическую точность.

Текстуры: генерируются с помощью модели TextureGen, которая обеспечивает высокое качество и согласованность текстур.


🆚 Улучшения по сравнению с AssetGen 1.0
Одностадийная генерация: AssetGen 2.0 использует одностадийную диффузионную модель, что позволяет напрямую создавать 3D-объекты из текстовых или визуальных запросов, улучшая качество и сокращая время генерации.

Повышенная детализация: новая архитектура обеспечивает более высокую детализацию и точность геометрии по сравнению с предыдущей версией.

Улучшенные текстуры: TextureGen обеспечивает более высокое качество текстур с улучшенной согласованностью между различными видами объекта.

🌍AssetGen 2.0 уже используется внутри компании для создания 3D-миров и будет доступна для разработчиков Horizon позже в этом году. Планируется также расширение возможностей модели для генерации целых 3D-сцен на основе текстовых или визуальных запросов.

🔗 Подробнее

@data_analysis_ml
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ NVIDIA поставит в Саудовскую Аравию 18 000 топовых чипов для ИИ.

NVIDIA отправит более 18 000 флагманских Blackwell GB300 в саудовскую компанию-стартап Humain, заявил CEO Джeнсeн Хуанг на инвестиционном форуме в Эр-Рияде. Эти чипы, одни из самых мощных в мире, будут работать в дата-центрах суммарной мощностью 500 мегаватт, помогая строить ИИ-инфраструктуру страны.

Humain, принадлежащая местному суверенному фонду, позже задействует «сотни тысяч» GPU. AMD тоже участвует в проекте, и тоже поставит свои чипы для аналогичной инфраструктуры на $10 млрд.
cnbc.com

✔️ Audible внедряет ИИ для создания аудиокниг.

Audible объявил о внедрении полного цикла производства аудиокниг на основе ИИ — от перевода до озвучки. В ближайшие месяцы сервис предложит более 100 синтезированных голосов на английском, испанском, французском и итальянском языках с акцентами и диалектами.

Технология поддерживает два варианта перевода: текст-текст (с последующей озвучкой) и речь-речь, сохраняющую стиль оригинального чтеца. Для точности перевода доступна проверка профессиональными лингвистами. Первые тесты перевода стартуют этой осенью.
thebookseller.com

✔️ Tencent CodeBuddy: ИИ-ассистент для программистов.

Tencent запустил CodeBuddy, инструмент, который может стать конкурентом Cursor. Он поддерживает автодополнение кода, диагностику ошибок, рефакторинг, написание тестов и ревью, а также работает с экосистемой WeChat.

Особенность сервиса - режим Craft: ИИ понимает задачи на естественном языке и генерирует проекты из нескольких файлов. CodeBuddy поддерживает MCP-протокол, позволяя интегрировать сторонние инструменты без лишних телодвижений. В основе — модели DeepSeek V3 и HunYuan Turbo S, доступные бесплатно. Инструмент совместим с VSCode, Jetbrains и другими IDE.
copilot.tencent.com

✔️ Intel Arc B580 может получить уникальную версию с двумя GPU и 48 ГБ памяти.

Портал videocardz поделился слухами о том, что один из партнеров Intel разрабатывает двухчиповую версию видеокарты Arc B580 с суммарными 48 ГБ видеопамяти. По данным неназванного источника, устройство получит нестандартный дизайн, а его анонс запланирован на ближайшую неделю. Хотя точный бренд пока не называется, известно, что проект не является официальной разработкой Intel и находится под NDA.

При этом, обычная версия B580 с 24 ГБ задерживается на несколько месяцев и есть вероятность, что это связано с "мистической" 48 ГБ-версией. Если информация подтвердится, это станет редким случаем десктопного двухчипового решения в эпоху монопольных GPU. Ждем подробностей на Computex.
videocardz.com

✔️ Утечка системного промпта Claude взбудоражила ИИ-сообщество.

Системный промпт Claude, описывающий поведение модели и ее инструменты, слили в сеть — 16,7 тыс. слов и 24 тыс. токенов. Документ раскрывает детали от формата ответов до методов решения задач, например, как считать буквы в слове «strawberry». В сравнении с 2,2 тыс. словами у OpenAI он гигантский. Большая часть текста посвящена интеграции с MCP-сервером, поисковыми правилами и «горячими исправлениями» для данных после 2024 года.

Andrej Karpathy назвал утечку поводом обсудить новую парадигму обучения ИИ: вместо тонкой настройки весов модели он предложил редактировать промпты вручную, как человек использует заметки. Это должно помочь ИИ запоминать стратегии и адаптироваться к контексту. Однако критики возражают: автономные подсказки могут запутать модель, а без постоянного обучения эффект будет краткосрочным.
news.ycombinator.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Anthropic проводит испытания безопасности новой модели под названием «Клод-Нептун».

Не удивлюсь, если мы скоро увидим Claude 4.

Дарио Амодей в своём последнем интервью говорил, что Claude 4 будет готов через шесть месяцев. Похоже, это время уже подходит.

#Claude

@data_analysis_ml - подписаться
🎨 Step1X-3D — Генерация текстурированных 3D-объектов нового поколения

Step1X-3D — это открытая исследовательская платформа для высокоточной, воспроизводимой и управляемой генерации текстурированных 3D-ассетов. Проект разработан командой [StepFun](https://github.com/stepfun-ai) и доступен на Hugging Face.

🔧 Основные компоненты

- 📦 Очистка и подготовка данных
Обработано более 5 миллионов 3D-моделей. Отобраны 2 миллиона высококачественных ассетов с нормализованной геометрией и текстурами. Более 800 тысяч объектов доступны открыто.

- 🧠 Двухэтапная генеративная архитектура
1. Генерация геометрии
Используется гибрид VAE + Denoising Diffusion Transformer (DiT) для создания TSDF-представлений. Применяется латентное кодирование и выборка по краевым признакам для детализации.
2. Синтез текстур
Диффузионная модель с геометрическим кондиционированием и согласованием в латентном пространстве для кросс-вью согласованности.

- 🧪 Open Source
Полностью открыт: доступны обученные модели, код, примеры и pipeline для адаптации.

🌟 Особенности

- 🔄 Интеграция 2D → 3D
Поддерживает использование техник управления, таких как LoRA, из 2D генерации — теперь и для 3D-объектов.

- 🥇 SOTA-качество
По ряду метрик превосходит существующие open-source решения и приближается к проприетарным системам.

Step1X-3D задаёт новый стандарт в открытых 3D-исследованиях, объединяя качество, гибкость и открытость для исследователей, разработчиков и креаторов.

- 📄 Hugging Face
- 💻 GitHub
- 🚀 Демо
- ▶️ YouTube
This media is not supported in your browser
VIEW IN TELEGRAM
📢 Hugging Face теперь интегрирован с Kaggle Notebooks

С сегодняшнего дня пользователи Kaggle могут напрямую использовать любые модели с Hugging Face в своих ноутбуках — без ручной загрузки, настройки токенов и дополнительных библиотек.

🤝 Платформы Hugging Face и Kaggle объявили о партнёрстве, которое позволит участникам соревнований и исследователям работать с новейшими SOTA-моделями буквально "из коробки".

🔥 Это лишь первый шаг: команды уже работают над дальнейшей интеграцией, чтобы сделать работу с HF-моделями ещё удобнее внутри экосистемы Kaggle.

🔗 Попробовать можно прямо сейчас — поддержка уже включена в среду Kaggle Notebooks.

https://huggingface.co/blog/kaggle-integration
🤖 Создание легковесного персонального ассистента на базе Qwen

Хочешь создать собственного ИИ-ассистента, работающего локально? В статье на Machine Learning Mastery показано, как это сделать с помощью модели Qwen1.5-7B-Chat от Alibaba.

🔧 Что понадобится:
- Python
- Библиотеки: transformers, accelerate, bitsandbytes, einops, ipywidgets
- Модель Qwen1.5-7B-Chat с поддержкой 4-битной квантизации для экономии памяти

🛠️ Основные шаги:
1. Установка необходимых библиотек и проверка совместимости
2. Загрузка модели и токенизатора с использованием Hugging Face Transformers
3. Настройка квантизации (4-битной или 8-битной) для оптимизации использования памяти
4. Создание функции генерации ответов с учетом истории чата
5. Реализация пользовательского интерфейса с помощью ipywidgets или командной строки

📈 Преимущества:
- Работа на локальной машине без необходимости подключения к интернету
- Быстрая генерация ответов благодаря квантизации и использованию GPU
- Гибкость в настройке и расширении функциональности ассистента

🔗 Подробнее о процессе создания ассистента читайте в оригинальной статье
II-Medical-8B — компактная, но мощная модель , специально разработанная для медицинских задач.

Несмотря на размер, она превосходит более крупные модели, такие как GPT-4.5, по точности и эффективности в клинических тестах.

🔍 Почему это важно
Точность и прозрачность: II-Medical-8B обеспечивает пошаговое клиническое рассуждение, что критично для медицинских приложений.

- Доступность: Модель достаточно компактна, чтобы запускаться локально, обеспечиваяет быстрый и приватный доступ без необходимости в дорогой облачной инфраструктуре.

📍 С лицензией MIT.

Для запуска не требуется GPU

https://huggingface.co/Intelligent-Internet/II-Medical-8B
⚡️ NNCF — фреймворк для сжатия нейросетей без потерь точности. Проект поддерживает квантование, сжатие весов и другие методы как после обучения, так и непосредственно во время тренировки моделей.

Инструмент работает с PyTorch, TensorFlow, ONNX и OpenVINO, предлагая единый API для разных фреймворков. Например, для 8-битного квантования после обучения достаточно 300 примеров калибровочных данных, никаких сложных настроек. Проект имеет интеграцию с HuggingFace Optimum и OpenVINO Training Extensions, а также готовые примеры для классификации изображений, детекции объектов и даже NLP.

🤖 GitHub

@data_analytics_ml
Media is too big
VIEW IN TELEGRAM
🔜 soarXiv — и это очень красивый способ исследовать человеческие знания.

Вам нужно заменить «arxiv» на «soarxiv» в URL статьи, и вы попадёте на её визуализацию во Вселенной.

Поддерживается примерно 2,8 миллиона научных работ.

soarxiv.org
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Современные роботы для надёжной и устойчивой работы должны помнить, что происходило ранее.
Но как только в диффузионные политики добавляют историю действий — производительность падает, а обучение становится дорогим и нестабильным.

📌 Исследователи представили новый метод — PTP (Past Trajectory Prediction), который помогает роботам эффективно использовать прошлый опыт.

Что делает PTP:

Учит робота находить связь между прошлым и будущим
Позволяет использовать быстрые кэшированные контексты вместо длинной истории
Ускоряет обучение и повышает качество поведения в 3 раза
Уменьшает вычислительные затраты более чем в 10 раз
Добавляет трюк на этапе запуска, который проверяет, следит ли робот за собственной историей

📈 Обучение роботов с учётом долгосрочного контекста стало реально применимым.
Если мы хотим создавать умных, автономных и надёжных машин — это большой шаг вперёд.

🔗 Подробнее:
-
Статья
-
Проект
-
Код

https://www.tgoop.com/data_analysis_ml
Владельцы Mac, вам подарок подъехал: MLX LM теперь интегрирован непосредственно в Hugging Face 🤯

⬇️ Вы можете запустить более 4400 LLM локально на Apple Silicon.

Нужно только включить MLX LM в настройках локальных приложений:

https://huggingface.co/settings/local-apps

И выбрать модель: https://huggingface.co/models?library=mlx

#apple #mlx

@data_analysis_ml
🗣️ TEN VAD — ультраточная система обнаружения речи в реальном времени

Это современная модель Voice Activity Detection (VAD), превосходящая по точности популярные решения вроде WebRTC VAD и Silero VAD.

Она стала частью фреймворка TEN Framework — платформы для создания мультимодальных голосовых агентов.

🔹 Что делает TEN VAD особенной:

📈 Точность на SOTA-уровне — протестирована на LibriSpeech, GigaSpeech, DNS Challenge
🕒 Минимальная задержка — точное определение начала и конца речи в реальном времени
🧩 Низкие требования к ресурсам — подходит даже для мобильных устройств
⚙️ Гибкая интеграция — поддержка C и Python, работает на Linux, Windows, macOS, Android и iOS
🔊 Оптимизирована для 16 кГц аудио, с шагами 10/16 мс

https://huggingface.co/TEN-framework/ten-vad
🧠 BAGEL‑7B‑MoT от ByteDance — открытая мультимодальная модель нового поколения

ByteDance представили BAGEL‑7B‑MoT — мощную мультимодальную модель с 7 млрд активных параметров (14B total), которая уверенно конкурирует с лидерами в генерации, понимании и редактировании изображений.

🔹 Ключевые особенности:
• Архитектура Mixture‑of‑Transformer‑Experts (MoT)
• Два энкодера: один для пикселей (VAE+ViT), второй для семантики
• Обучение на interleaved текст+изображение+видео+web токенах
• Поддержка генерации, редактирования, мультиязычного понимания

🔹 Что умеет BAGEL:
• Понимает изображения на уровне лучших open моделей (Qwen2.5‑VL‑7B)
• Генерирует изображения лучше SD3‑Medium (GenEval score: 0.88)
• Делает интеллектуальное редактирование (CoT score: 55.3)
• Навигация по сценам и предсказание будущих кадров

🔹 Бенчмарки:

| Тест | Qwen2.5‑VL‑7B | BAGEL |
|-------------|---------------|--------|
| MME | 2347 | 2388 |
| MMBench | 83.5 | 85.0 |
| MathVista | 68.2 | 73.1 |
| GenEval | 0.80 | 0.88 |


🔹 Под капотом:
• SigLIP + FLUX.1 + Flash Attention 2
• Параметры: 7B активных, 14B полных
• Весовые файлы доступны на Hugging Face (~29 GB)
• Лицензия: Apache 2.0

📎 Репозиторий и модель:
https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT
Media is too big
VIEW IN TELEGRAM
Прогресс искусственного интеллекта поистине стремителен

#Veo3

@data_analysis_ml
🚀 Project NOVA — Networked Orchestration of Virtual Agents

Что это такое?
Project NOVA — это полностью open-source и self-hosted платформа, позволяющая развернуть экосистему ИИ‑ассистентов. В ядре стоит роутер-агент, который принимает запросы и перенаправляет их к одному из 25+ специализированных агентов, реализованных через n8n и MCP-серверы :contentReference[oaicite:0]{index=0}.

Основные особенности
- Централизованная маршрутизация запросов к нужному агенту
- Агенты для разных задач: управление знаниями, разработка, медиа и автоматизация
- Полностью работает локально: конфигурация через Docker и docker-compose
- Общение между агентами через n8n workflows и протокол MCP (Model Context Protocol)
- Есть примеры системных подсказок, Dockerfile и готовые потоки для быстрого старта :contentReference[oaicite:1]{index=1}

Как это работает
- В репозитории:
- Папка agents/ — системные промты для агентов
- mcp-server-dockerfiles/ — Docker-образы и конфиги для запуска серверов MCP
- n8n-workflows/ — экспорт потоков для n8n
- prompt-templates/ — шаблоны для автоматического создания новых агентов
- reference-guide/ — подробная документация и справочники :contentReference[oaicite:2]{index=2}

Примеры агентов
- Управление знаниями: TriliumNext, BookStack, SiYuan, Paperless-NGX и др.
- Разработка: CLI Server, Gitea, Forgejo, поиск по файловой системе
- Медиа: Ableton Copilot, OBS Studio, Reaper, YouTube (транскрипция)
- Автоматизация: веб-скрапинг (Puppeteer), RAGFlow, Flowise
- Умный дом: Home Assistant, Prometheus мониторинг :contentReference[oaicite:3]{index=3}

Начало работы
1. Установи n8n (версия ≥1.88.0) и MCP-клиент
2. Запусти MCP-сервера через Docker (конфиги в репозитории)
3. Импортируй потоки в n8n (через CLI или Web UI)
4. Настрой ключи API и подключи LLM (OpenAI, Claude, Gemini или локальные Ollama)
5. Запусти router workflow — и вводи вопросы в чат: NOVA сама маршрутизирует запросы :contentReference[oaicite:4]{index=4}

Зачем это нужно?
- 📚 Управление знаниями: попросить найти нужные заметки или документы
- 🎙 Медиа‑асистент: управлять Ableton или OBS через чат
- Автоматизация рутинных задач: скрипты, API, инфраструктура и умный дом
- 🔐 Локальный контроль и конфиденциальность — всё на своих серверах

Опыт сообщества
На Reddit отмечают:
> "NOVA — self‑hosted AI ecosystem… entirely self‑hostable, open-source, and privacy-focused" :contentReference[oaicite:5]{index=5}

📌GitHub
: https://github.com/dujonwalker/project-nova
Forwarded from Machinelearning
⚡️ Anthropic представила Claude 4 Opus и Sonnet 4

На мероприятии Code /w Claude CEO Anthropic презентовал Claude 4 Opus и Claude Sonnet 4.

✔️ Opus 4 Anthropic называет лучшей моделью для кодинга, она справляется с многошаговыми задачами, работая часами без потери эффективности — например, сохраняет контекст игры в Pokémon, записывая ключевые данные в локальные файлы.

✔️Sonnet 4, доступная даже бесплатным пользователям, стал серьезным апгрейдом предыдущей версии: точнее выполняет инструкции и сократил ошибки в навигации по коду с 20% до нуля.

Обе модели поддерживают расширенное мышление: чередуют анализ и использование инструментов веб-поиска, а также выполняют задачи параллельно.

Для разработчиков появилась интеграция с VS Code, JetBrains и GitHub Actions — правки от Claude теперь отображаются прямо в редакторе. В бета-режиме можно подключать SDK для создания собственных агентов.

По словам партнеров: GitHub и Replit, Opus 4 понимает сложные кодбазы, а Sonnet 4 идеален для повседневных задач. Например, в GitHub Copilot его уже тестируют как основу для нового агента.

В тарифные планы Pro, Max, Team и Enterprise Claude включены обе модели и расширенное мышление, а Sonnet 4 также доступен для бесплатных пользователей.

Обе модели доступны в Anthropic API, Amazon Bedrock и Google Cloud's Vertex AI. Ценообразование остается неизменным по сравнению с предыдущими моделями Opus и Sonnet: Opus 4 - $15/$75 за миллион токенов (ввод/вывод), Sonnet 4 - $3/$15.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/06/12 16:20:34
Back to Top
HTML Embed Code: