tgoop.com/css_nlp/103
Last Update:
From Tokens to Thoughts: How LLMs and Humans Trade Compression for Meaning
این یکی از باحال ترین مقاله هایی هستش که ژورافسکی و یان لکون که نام های آشنایی هستن بیرون دادن.
تو این مقاله سعی کردن تفاوت بین LLM ها و سیستم زبانی انسان ها رو مشخص کنن.
و نتیجه های باحالی به دست اوردن.
مدل های زبانی به صورت اگرسیو طور کامپرس میکنن مفاهیم رو و اونقدر که دیگه با مفاهیم ما انسان ها تفاوت ایجاد میشه.
قضیه اینکه این مدل ها در اصل یه عالمه دیتا رو که بخوردشون میدیم کامپرس میکنن اطلاعات رو و بعد چون کامپرس شدن (فضای کمتری میگیرن تو فضا) و بعد زمان تولید یا جنریشن این اطلاعات کامپرس شده دیکود میشن.
مغز ماهم همینطور هستش و مثلا شما ممکنه یه کتاب ۱۰۰۰ صفحه ای رو بخونید و بعدش تو ذهن شما یه سامری یا خلاصه ای تو ذهن شما میمونه و شما بعد ها زمانی که بازگو میکنید میتونید اون خلوص داستان رو با طبع ایجاد variation بازگو کنید.
As the mental scaffolding of human cognition, concepts enable efficient interpretation, generalization
from sparse data, and rich communication. For LLMs to transcend surface-level mimicry and achieve
more human-like understanding, it is critical to investigate how their internal representations navigate
the crucial trade-off between information compression and the preservation of semantic meaning. Do
LLMs develop conceptual structures mirroring the efficiency and richness of human thought, or do
they employ fundamentally different representational strategies?
حتما این مقاله رو بخونید :)
@css_nlp