CPLUSPLUC Telegram 1164
Forwarded from Machinelearning
🌟 Фреймворк **CUDA-L1** сам научился оптимизировать код для GPU — и добился в среднем **3.12× ускорения работы модели**, а в пике — **до 120×**. .

Попросите любую LLM написать CUDA-код, и скорее всего, вы получите что-то, что либо не компилируется, либо работает мучительно медленно. Причина проста: качественного CUDA-кода в обучающих данных моделей почти не было.


Чтобы исправить это досадное упущение, Deep Reinforce AI создали систему CUDA-L1, которая основана на трехэтапном пайплайне: сначала supervised-обучение для освоения основ, затем self-supervised для практики и, наконец, контрастное обучение с подкреплением, чтобы было все максимально быстро.

🟢На первом этапе система училась писать корректный и компилируемый CUDA-код.

Для этого существующий код был аугментирован - создавались его вариации, чтобы повысить насмотренность модели.

🟢На втором этапе модель генерировала собственный CUDA-код, тестировала его и училась на работающих примерах, отсеивая неудачные.

🟢Самое интересное - третий этап.

Обучаемой модели показывали несколько реализаций CUDA-ядер вместе с их показателями ускорения, например: «kernel_v1 дает ускорение 1.2x», «kernel_v2 — 2.8x», а «kernel_v3 — 1.5x». Затем задали 3 вопроса:

🟠Почему kernel_v2 настолько быстрее?
🟠Какая стратегия оптимизации сработает еще лучше?
🟠Напиши ядро, которое превзойдет их все.

Таким образом, модель не гадает вслепую, а учится на конкретных примерах, анализируя причины разницы в производительности.

🟡Отдельная история - как победили reward hacking.

После обучения выяснилось, что более 30% сгенерированных реализаций пытались сжульничать - создавали дополнительные CUDA-потоки, которые выполнялись асинхронно.

Поскольку бенчмарк KernelBench отслеживал время только на основном потоке, код выглядел быстрее, чем был на самом деле, показывая фиктивное ускорение в 18 раз.

Другие уловки состояли в манипуляции гиперпараметрами задачи (уменьшение batch_size или размерностей) и кеширование результатов вычислений.

🟡Пришлось строить многоуровневую защиту.

Во-первых, в качестве "адвоката дьявола" взяли adversarial-чекер на базе DeepSeek-R1, который анализировал код на предмет эксплойтов с точностью обнаружения более 60%.

Во-вторых, собрали базу данных из более чем 500 уникальных паттернов взлома, это повысило точность обнаружения на 25%.

И в-третьих, применили математическое сглаживание и нормализацию наград, где любое подозрительное ускорение (от 1.5x для простых операций) дополнительно проверялось.

🟡После всех фильтров и проверок прогон на бенчмарке KernelBench оказался весьма позитивными.

Система успешно сгенерировала рабочий код для 249 из 250 задач, причем в 240 случаях код оказался быстрее базовой реализации.

Среднее ускорение по всем задачам составило 3.12 раза, максимальное - аж 120 раз. Медианное ускорение (50-й перцентиль) составило 1.42x, а 75-й перцентиль — 2.25x.

Производительность по уровням сложности задач распределилась следующим образом: на простых операциях среднее ускорение составило 2.78x, на последовательностях операторов - 3.55x, а на сложных задачах вроде полных слоев трансформера - 2.96x.

🟡Самое важное - это переносимость оптимизаций.

Код, оптимизированный на NVIDIA A100, был протестирован на других GPU. Результаты показали, что найденные паттерны оптимизации фундаментальны и работают на разных архитектурах.

Среднее ускорение на H100 составило 2.39x (успешных ускорений 227 из 250), на L40 — 3.12x (228/248), а на потребительской RTX 3090 — 2.50x (213/242).

▶️ Пока веса и код не опубликованы, но в ожидании можно покрутить интерактивное демо и воспроизвести тесты из пейпера - в репозитории проекта есть фрагменты CUDA-кода с отдельными версиями для разных GPU.


📌Лицензирование: GPL-3.0 License.


🟡Страница проекта
🟡Arxiv
🟡Demo
🖥Github


@ai_machinelearning_big_data

#AI #ML #CUDA #DeepReinforce #ContrastiveRL
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
9🔥5👍3



tgoop.com/cpluspluc/1164
Create:
Last Update:

🌟 Фреймворк **CUDA-L1** сам научился оптимизировать код для GPU — и добился в среднем **3.12× ускорения работы модели**, а в пике — **до 120×**. .

Попросите любую LLM написать CUDA-код, и скорее всего, вы получите что-то, что либо не компилируется, либо работает мучительно медленно. Причина проста: качественного CUDA-кода в обучающих данных моделей почти не было.


Чтобы исправить это досадное упущение, Deep Reinforce AI создали систему CUDA-L1, которая основана на трехэтапном пайплайне: сначала supervised-обучение для освоения основ, затем self-supervised для практики и, наконец, контрастное обучение с подкреплением, чтобы было все максимально быстро.

🟢На первом этапе система училась писать корректный и компилируемый CUDA-код.

Для этого существующий код был аугментирован - создавались его вариации, чтобы повысить насмотренность модели.

🟢На втором этапе модель генерировала собственный CUDA-код, тестировала его и училась на работающих примерах, отсеивая неудачные.

🟢Самое интересное - третий этап.

Обучаемой модели показывали несколько реализаций CUDA-ядер вместе с их показателями ускорения, например: «kernel_v1 дает ускорение 1.2x», «kernel_v2 — 2.8x», а «kernel_v3 — 1.5x». Затем задали 3 вопроса:

🟠Почему kernel_v2 настолько быстрее?
🟠Какая стратегия оптимизации сработает еще лучше?
🟠Напиши ядро, которое превзойдет их все.

Таким образом, модель не гадает вслепую, а учится на конкретных примерах, анализируя причины разницы в производительности.

🟡Отдельная история - как победили reward hacking.

После обучения выяснилось, что более 30% сгенерированных реализаций пытались сжульничать - создавали дополнительные CUDA-потоки, которые выполнялись асинхронно.

Поскольку бенчмарк KernelBench отслеживал время только на основном потоке, код выглядел быстрее, чем был на самом деле, показывая фиктивное ускорение в 18 раз.

Другие уловки состояли в манипуляции гиперпараметрами задачи (уменьшение batch_size или размерностей) и кеширование результатов вычислений.

🟡Пришлось строить многоуровневую защиту.

Во-первых, в качестве "адвоката дьявола" взяли adversarial-чекер на базе DeepSeek-R1, который анализировал код на предмет эксплойтов с точностью обнаружения более 60%.

Во-вторых, собрали базу данных из более чем 500 уникальных паттернов взлома, это повысило точность обнаружения на 25%.

И в-третьих, применили математическое сглаживание и нормализацию наград, где любое подозрительное ускорение (от 1.5x для простых операций) дополнительно проверялось.

🟡После всех фильтров и проверок прогон на бенчмарке KernelBench оказался весьма позитивными.

Система успешно сгенерировала рабочий код для 249 из 250 задач, причем в 240 случаях код оказался быстрее базовой реализации.

Среднее ускорение по всем задачам составило 3.12 раза, максимальное - аж 120 раз. Медианное ускорение (50-й перцентиль) составило 1.42x, а 75-й перцентиль — 2.25x.

Производительность по уровням сложности задач распределилась следующим образом: на простых операциях среднее ускорение составило 2.78x, на последовательностях операторов - 3.55x, а на сложных задачах вроде полных слоев трансформера - 2.96x.

🟡Самое важное - это переносимость оптимизаций.

Код, оптимизированный на NVIDIA A100, был протестирован на других GPU. Результаты показали, что найденные паттерны оптимизации фундаментальны и работают на разных архитектурах.

Среднее ускорение на H100 составило 2.39x (успешных ускорений 227 из 250), на L40 — 3.12x (228/248), а на потребительской RTX 3090 — 2.50x (213/242).

▶️ Пока веса и код не опубликованы, но в ожидании можно покрутить интерактивное демо и воспроизвести тесты из пейпера - в репозитории проекта есть фрагменты CUDA-кода с отдельными версиями для разных GPU.


📌Лицензирование: GPL-3.0 License.


🟡Страница проекта
🟡Arxiv
🟡Demo
🖥Github


@ai_machinelearning_big_data

#AI #ML #CUDA #DeepReinforce #ContrastiveRL

BY C++ Academy






Share with your friend now:
tgoop.com/cpluspluc/1164

View MORE
Open in Telegram


Telegram News

Date: |

While some crypto traders move toward screaming as a coping mechanism, many mental health experts have argued that “scream therapy” is pseudoscience. Scientific research or no, it obviously feels good. You can invite up to 200 people from your contacts to join your channel as the next step. Select the users you want to add and click “Invite.” You can skip this step altogether. Hashtags In handing down the sentence yesterday, deputy judge Peter Hui Shiu-keung of the district court said that even if Ng did not post the messages, he cannot shirk responsibility as the owner and administrator of such a big group for allowing these messages that incite illegal behaviors to exist. During the meeting with TSE Minister Edson Fachin, Perekopsky also mentioned the TSE channel on the platform as one of the firm's key success stories. Launched as part of the company's commitments to tackle the spread of fake news in Brazil, the verified channel has attracted more than 184,000 members in less than a month.
from us


Telegram C++ Academy
FROM American