BUILDING_SINGULARITY Telegram 91
ShortGPT: неоптмальность LLM’ок 📉

Ещё одна статья, демонстрирующая ту же идею (как и в Mixture-of-Depths): в LLM не все параметры одинаково ценны, их количество используется неоптмильно.

В работе ShortGPT: Layers in Large Language Models are More Redundant Than You Expect показали очень простой метод прунинга (удаления параметров модели), который приводит к пропорциональному ускорению модели и очень слабо просаживает качество (на MMLU бенчмарке).

Метод такой:
1️⃣ Прогоняем модель на калибровочном датасете и для каждого трансформер блока (self-attn + ffn) подсчитываем его важность (Block Influence)
2️⃣ Block Influence - косинусное расстояние между вектором токена на входе и им же на выходе, усредненное по всей входной последовательности (рисунок 3)
3️⃣ Сортируем блоки по их важности
4️⃣ Удаляем блоки целиком в порядке увеличения важности


Что получается:
🔹 выкинули 25% от Llama2-13B и просели в качестве на 2.7% на MMLU (рисунок 2)
🔹 прунинг просто выкидыванием блоков (а не хитрым выкидыванием параметров внутри блока) дает пропорциональное ускорение модели сразу
🔹слои в начале LLM важнее, чем более глубокие (рисунок 1)
🔹 сравнились с другими методами прунинга (без последующего дообучения - это на future work) и победили их; попробовали другую метрику важности блока, основанную на изменении магнитуды вектора, их Block Influence лучше
🔹написали, что пробовали ещё пару бенчмарков и там качество просаживалось сильно 😕; в общем, надо тестить

Интересно ещё
🔸если дообучить модель 10B (аналогичный размер, как у запруненной) с нуля, будет ли она хуже запруненной? а если запруненную дообучить?
🔸почему такие бесполезные слои присутствуют? надо дольше учить модели? или способ обучения проблемный?

Когда нибудь наука дип лернинга найдет ответы и теоретические обоснования на эти вопросы, а пока мы просто будем обучать модельки и смотреть, что получается 😉

@building_singularity
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9👍3🎉2😁1



tgoop.com/building_singularity/91
Create:
Last Update:

ShortGPT: неоптмальность LLM’ок 📉

Ещё одна статья, демонстрирующая ту же идею (как и в Mixture-of-Depths): в LLM не все параметры одинаково ценны, их количество используется неоптмильно.

В работе ShortGPT: Layers in Large Language Models are More Redundant Than You Expect показали очень простой метод прунинга (удаления параметров модели), который приводит к пропорциональному ускорению модели и очень слабо просаживает качество (на MMLU бенчмарке).

Метод такой:
1️⃣ Прогоняем модель на калибровочном датасете и для каждого трансформер блока (self-attn + ffn) подсчитываем его важность (Block Influence)
2️⃣ Block Influence - косинусное расстояние между вектором токена на входе и им же на выходе, усредненное по всей входной последовательности (рисунок 3)
3️⃣ Сортируем блоки по их важности
4️⃣ Удаляем блоки целиком в порядке увеличения важности


Что получается:
🔹 выкинули 25% от Llama2-13B и просели в качестве на 2.7% на MMLU (рисунок 2)
🔹 прунинг просто выкидыванием блоков (а не хитрым выкидыванием параметров внутри блока) дает пропорциональное ускорение модели сразу
🔹слои в начале LLM важнее, чем более глубокие (рисунок 1)
🔹 сравнились с другими методами прунинга (без последующего дообучения - это на future work) и победили их; попробовали другую метрику важности блока, основанную на изменении магнитуды вектора, их Block Influence лучше
🔹написали, что пробовали ещё пару бенчмарков и там качество просаживалось сильно 😕; в общем, надо тестить

Интересно ещё
🔸если дообучить модель 10B (аналогичный размер, как у запруненной) с нуля, будет ли она хуже запруненной? а если запруненную дообучить?
🔸почему такие бесполезные слои присутствуют? надо дольше учить модели? или способ обучения проблемный?

Когда нибудь наука дип лернинга найдет ответы и теоретические обоснования на эти вопросы, а пока мы просто будем обучать модельки и смотреть, что получается 😉

@building_singularity

BY Приближаем сингулярность






Share with your friend now:
tgoop.com/building_singularity/91

View MORE
Open in Telegram


Telegram News

Date: |

Find your optimal posting schedule and stick to it. The peak posting times include 8 am, 6 pm, and 8 pm on social media. Try to publish serious stuff in the morning and leave less demanding content later in the day. With the administration mulling over limiting access to doxxing groups, a prominent Telegram doxxing group apparently went on a "revenge spree." With Bitcoin down 30% in the past week, some crypto traders have taken to Telegram to “voice” their feelings. For crypto enthusiasts, there was the “gm” app, a self-described “meme app” which only allowed users to greet each other with “gm,” or “good morning,” a common acronym thrown around on Crypto Twitter and Discord. But the gm app was shut down back in September after a hacker reportedly gained access to user data. Telegram desktop app: In the upper left corner, click the Menu icon (the one with three lines). Select “New Channel” from the drop-down menu.
from us


Telegram Приближаем сингулярность
FROM American