Вы когда-нибудь хотели сделать свою собственную систему рекомендаций фильмов? 🎬
Приходите на бесплатный вебинар, где Савелий Батурин, Senior ML-Engineer и преподаватель курса по ML школы Simulative в прямом эфире покажет как построить рекомендательную систему фильмов на Kaggle.
Что будем делать на вебинаре:
Вебинар будет интересен как новичкам, так и уже опытным специалистам
Please open Telegram to view this post
VIEW IN TELEGRAM
👾 Griptape — фреймворк для создания AI-приложений без головной боли. В отличие от популярных решений вроде LangChain, акцент сделан на модульность: можно легко менять провайдеров LLM, векторных БД или инструментов поиска, не переписывая бизнес-логику.
В инструменте есть встроенные механизмы для работы с памятью и готовые движки для частых задач: суммаризации, извлечения структурированных данных и даже оценки качества ответов моделей.
🤖 GitHub
@bigdata_ai
В инструменте есть встроенные механизмы для работы с памятью и готовые движки для частых задач: суммаризации, извлечения структурированных данных и даже оценки качества ответов моделей.
🤖 GitHub
@bigdata_ai
Википедия представила структурированный датасет на платформе Kaggle, чтобы облегчить разработчикам ИИ доступ к данным и снизить нагрузку на свою инфраструктуру. Вместо парсинга сырого текста ботамы, теперь доступны JSON-файлы на английском и французском языках с разделами статей, краткими описаниями, инфобоксами и ссылками на изображения.
Датасет оптимизирован для ML-задач: файнтюна моделей, анализа и тестирования. Это часть стратегии Викимедии, которая не только экономит ресурсы Википедии, но и упрощает работу с контентом — вместо борьбы с ботами разработчики получают готовый инструмент.
enterprise.wikimedia.com
Please open Telegram to view this post
VIEW IN TELEGRAM
🧪 Ragas — инструмент для объективной оценки LLM-приложений.
Платформа предлагает data-driven подход к тестированию языковых моделей, заменяя субъективные оценки точными метриками. С помощью Ragas можно не только анализировать качество ответов, но и автоматически генерировать тестовые датасеты, приближенные к реальным сценариям использования.
Проект выделяется глубокой интеграцией с популярными фреймворками — от LangChain до инструментов мониторинга. Особенно полезен при построении RAG-систем, где важен постоянный контроль качества на основе production-данных.
🤖 GitHub
@bigdatai
Платформа предлагает data-driven подход к тестированию языковых моделей, заменяя субъективные оценки точными метриками. С помощью Ragas можно не только анализировать качество ответов, но и автоматически генерировать тестовые датасеты, приближенные к реальным сценариям использования.
Проект выделяется глубокой интеграцией с популярными фреймворками — от LangChain до инструментов мониторинга. Особенно полезен при построении RAG-систем, где важен постоянный контроль качества на основе production-данных.
🤖 GitHub
@bigdatai
📂 Dot — локальный чат с документами на базе Phi-3.5. Этот проект выделяется на фоне корпоративных решений вроде Chat with RTX от Nvidia своей простотой и доступностью.
Разработанный студентом как side-проект, Dot предлагает минималистичный интерфейс для не-программистов, но при этом сохраняет всю мощь современных RAG-технологий под капотом.
Особенности:
▪️Готовые сборки для Windows и macOS
▪️Поддержка мультидокументных запросов
▪️Режим обычного чата без привязки к файлам
🔗 GitHub
@bigdatai
Разработанный студентом как side-проект, Dot предлагает минималистичный интерфейс для не-программистов, но при этом сохраняет всю мощь современных RAG-технологий под капотом.
Особенности:
▪️Готовые сборки для Windows и macOS
▪️Поддержка мультидокументных запросов
▪️Режим обычного чата без привязки к файлам
🔗 GitHub
@bigdatai
@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Собеседования DS: www.tgoop.com/machinelearning_interview
Нерйросети www.tgoop.com/ai_machinelearning_big_data
C++ www.tgoop.com/cpluspluc
Docker: www.tgoop.com/DevopsDocker
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/javatg
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Haskell: www.tgoop.com/haskell_tg
Физика: www.tgoop.com/fizmat
💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
Python: www.tgoop.com/pythonl
Linux: www.tgoop.com/linuxacademiya
Собеседования DS: www.tgoop.com/machinelearning_interview
Нерйросети www.tgoop.com/ai_machinelearning_big_data
C++ www.tgoop.com/cpluspluc
Docker: www.tgoop.com/DevopsDocker
Хакинг: www.tgoop.com/linuxkalii
Devops: www.tgoop.com/DevOPSitsec
Data Science: www.tgoop.com/data_analysis_ml
Javascript: www.tgoop.com/javascriptv
C#: www.tgoop.com/csharp_ci
Java: www.tgoop.com/javatg
Базы данных: www.tgoop.com/sqlhub
Python собеседования: www.tgoop.com/python_job_interview
Мобильная разработка: www.tgoop.com/mobdevelop
Golang: www.tgoop.com/Golang_google
React: www.tgoop.com/react_tg
Rust: www.tgoop.com/rust_code
ИИ: www.tgoop.com/vistehno
PHP: www.tgoop.com/phpshka
Android: www.tgoop.com/android_its
Frontend: www.tgoop.com/front
Big Data: www.tgoop.com/bigdatai
МАТЕМАТИКА: www.tgoop.com/data_math
Kubernets: www.tgoop.com/kubernetc
Разработка игр: https://www.tgoop.com/gamedev
Haskell: www.tgoop.com/haskell_tg
Физика: www.tgoop.com/fizmat
💼 Папка с вакансиями: www.tgoop.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tgoop.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tgoop.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tgoop.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tgoop.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tgoop.com/memes_prog
🇬🇧Английский: www.tgoop.com/english_forprogrammers
🧠ИИ: www.tgoop.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tgoop.com/addlist/BkskQciUW_FhNjEy
🎬 FunClip — open-source ИИ для автоматического монтажа видео
Alibaba представила любопытный инструмент для автоматической нарезки видео с помощью ИИ. FunClip использует speech-to-text модели, чтобы преобразовывать речь в текст с таймкодами, а затем вырезать нужные фрагменты.
Система поддерживает кастомизацию: можно задавать ключевые слова для улучшения распознавания или выбирать реплики конкретного человека. В последней версии добавили LLM-фичи — например, GPT и Qwen могут анализировать субтитры и предлагать моменты для монтажа.
🤖 GitHub
@bigdatai
Alibaba представила любопытный инструмент для автоматической нарезки видео с помощью ИИ. FunClip использует speech-to-text модели, чтобы преобразовывать речь в текст с таймкодами, а затем вырезать нужные фрагменты.
Система поддерживает кастомизацию: можно задавать ключевые слова для улучшения распознавания или выбирать реплики конкретного человека. В последней версии добавили LLM-фичи — например, GPT и Qwen могут анализировать субтитры и предлагать моменты для монтажа.
🤖 GitHub
@bigdatai
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Transformer Lab — персональная лаборатория для работы с LLM прямо на ноутбуке или сервере!
▪️ Один бинарник — скачивай, запускай, дообучай и сравнивай модели (Llama 3, Mistral, Gemma, Qwen, Phi 4 и сотни других) в пару кликов.
▪️ Поддержка движков Transformers, vLLM, Llama CPP и MLX для Apple Silicon.
▪️ Fine-tune, RLHF (DPO / ORPO / SIMPO), встроенный RAG-конструктор и галерея датасетов Hugging Face.
▪️ Быстрые бенчмарки, чат-UI и REST API для прототипов.
▪️ Работает на Windows, macOS (M-чипы full power!) и Linux; можно разделять UI и backend.
▪️ Полностью open-source (AGPL-3.0) — подключай плагины или пиши свои.
💻 Проверь репозиторий: github.com/transformerlab/transformerlab-app
Собери свою LLM-песочницу и ускорь эксперименты сегодня!
https://github.com/transformerlab/transformerlab-app
▪️ Один бинарник — скачивай, запускай, дообучай и сравнивай модели (Llama 3, Mistral, Gemma, Qwen, Phi 4 и сотни других) в пару кликов.
▪️ Поддержка движков Transformers, vLLM, Llama CPP и MLX для Apple Silicon.
▪️ Fine-tune, RLHF (DPO / ORPO / SIMPO), встроенный RAG-конструктор и галерея датасетов Hugging Face.
▪️ Быстрые бенчмарки, чат-UI и REST API для прототипов.
▪️ Работает на Windows, macOS (M-чипы full power!) и Linux; можно разделять UI и backend.
▪️ Полностью open-source (AGPL-3.0) — подключай плагины или пиши свои.
💻 Проверь репозиторий: github.com/transformerlab/transformerlab-app
Собери свою LLM-песочницу и ускорь эксперименты сегодня!
https://github.com/transformerlab/transformerlab-app
Forwarded from Machinelearning
🦾 Berkeley Humanoid Lite — открытый человекоподобный робот
Калифорнийский университет Беркли представил проект Humanoid Lite — результат многолетних исследований и экспериментов по созданию простых в производстве человекоподобных роботов.
Платформа полностью придерживается принципов Open Hardware: в ней используются свободно распространяемое ПО, серийные комплектующие, доступные в розничной продаже, а также детали, напечатанные на 3D-принтере.
🌟 100 % open-source под MIT-лицензией: прошивки, схемы, BOM, STL-модели, RL-контроллеры
✔️ Open Hardware: доступные в рознице электро- и мехкомпоненты, детали печатаются на обычном FDM-принтере
➡️ Итоговая стоимость сборки — примерно 5 000 USD
⭐️ Модульная конструкция: легко превращается в квадропода или «кенавроподобного» робота
➡️ Экосистема: Isaac Lab / Isaac Sim / MuJoCo, телеметрия через SteamVR-контроллеры
⏩ Что доступно:
- Исходный код робота на C++ и Python
- Модели машинного обучения для контроллера движений
- Чертежи пластиковых деталей
- Полный список комплектующих с ссылками на покупку
- Пошаговый сборочный план
- Симуляционные окружения для тренировки и запуска робота
🌟 Что робот умеет уже сейчас
- локомоция: RL-контроллер приводит в заданную точку
- телеприсутствие: человек управляет манипулятором через VR-контроллеры
- навигация: экспериментальные алгоритмы обхода препятствий
- поддержка мелкой моторики
🔥 Как удалось удешевить:
- пластиковые шестерни, напечатанные на 3D-принтере
- циклоидные редукторы, повышающие надёжность пластика
- использование типовых драйверов и контроллеров без кастомных плат
*Clone → Print → Build → Hack!* 🤓
🔜 Проект
🔜 Код
🔜 Схемы
@ai_machinelearning_big_data
#robots #ai #ml #opensource
Калифорнийский университет Беркли представил проект Humanoid Lite — результат многолетних исследований и экспериментов по созданию простых в производстве человекоподобных роботов.
Платформа полностью придерживается принципов Open Hardware: в ней используются свободно распространяемое ПО, серийные комплектующие, доступные в розничной продаже, а также детали, напечатанные на 3D-принтере.
⭐️ Модульная конструкция: легко превращается в квадропода или «кенавроподобного» робота
- Исходный код робота на C++ и Python
- Модели машинного обучения для контроллера движений
- Чертежи пластиковых деталей
- Полный список комплектующих с ссылками на покупку
- Пошаговый сборочный план
- Симуляционные окружения для тренировки и запуска робота
- локомоция: RL-контроллер приводит в заданную точку
- телеприсутствие: человек управляет манипулятором через VR-контроллеры
- навигация: экспериментальные алгоритмы обхода препятствий
- поддержка мелкой моторики
- пластиковые шестерни, напечатанные на 3D-принтере
- циклоидные редукторы, повышающие надёжность пластика
- использование типовых драйверов и контроллеров без кастомных плат
*Clone → Print → Build → Hack!* 🤓
@ai_machinelearning_big_data
#robots #ai #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Xiaomi выпустила в опенсорсный релиз MiMo-7B — набор языковых моделей, созданных для решения сложных задач, от математики до генерации кода.
Несмотря на скромные 7 млрд. параметров, модель демонстрирует результаты, превосходящие 32B-конкурентов, разрушая стереотипы о зависимости качества от размера.
Создание MiMo началось с предтрейна на 25 трлн. токенов, где акцент был на повышении плотности логических паттернов.
Для этого разработчики пересмотрели обработку данных: улучшили извлечение математических формул и блоков кода из веб-страниц, добавили синтетические данные, сгенерированные топовыми ризонинг-моделями, и все это обработали уникальной стратегией смешивания.
На первых этапах доля STEM-контента достигала 70%, а на финальном — добавили синтетику и расширили контекст до 32K токенов.
Обучение с подкреплением на стадии посттренинга проводили на массиве из 130 тыс. задач, где каждая проверялась автоматически. Чтобы избежать reward hacking, использовали только rule-based награды.
Для сложных задач по программированию ввели систему частичных баллов (как на олимпиадах по информатике) - даже если решение не идеально, модель получает feedback за пройденные тесты. А чтобы RL не застревал на простых примерах, добавили ресэмплинг: 10% данных брали из пула уже решенных задач, балансируя эффективность и стабильность обучения.
Результаты бенчмарков: на LiveCodeBench v6 MiMo-7B-RL набрала 49.3%, обойдя QwQ-32B на 10 пунктов, а на AIME 2025 — 55.4%, оставив позади OpenAI o1-mini. При этом базовая версия модели уже показывала 75.2% на BBH, что выше аналогов своего класса.
⚠️ Разработчики рекомендуют использовать для локального инференса их форк vLLM , он поддерживает MTP (Multiple-Token Prediction), но и на HF Transformers инференс тоже работает.
@ai_machinelearning_big_data
#AI #ML #LLM #RL #Xiaomi #MiMo
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM