BIGDATAI Telegram 1286
Forwarded from Machinelearning
🌟 MiMo-7B: Набор компактных ризонинг-моделей от Xiaomi.

Xiaomi выпустила в опенсорсный релиз MiMo-7B — набор языковых моделей, созданных для решения сложных задач, от математики до генерации кода.

Несмотря на скромные 7 млрд. параметров, модель демонстрирует результаты, превосходящие 32B-конкурентов, разрушая стереотипы о зависимости качества от размера.

Создание MiMo началось с предтрейна на 25 трлн. токенов, где акцент был на повышении плотности логических паттернов.

Для этого разработчики пересмотрели обработку данных: улучшили извлечение математических формул и блоков кода из веб-страниц, добавили синтетические данные, сгенерированные топовыми ризонинг-моделями, и все это обработали уникальной стратегией смешивания.

На первых этапах доля STEM-контента достигала 70%, а на финальном — добавили синтетику и расширили контекст до 32K токенов.

Обучение с подкреплением на стадии посттренинга проводили на массиве из 130 тыс. задач, где каждая проверялась автоматически. Чтобы избежать reward hacking, использовали только rule-based награды.

Для сложных задач по программированию ввели систему частичных баллов (как на олимпиадах по информатике) - даже если решение не идеально, модель получает feedback за пройденные тесты. А чтобы RL не застревал на простых примерах, добавили ресэмплинг: 10% данных брали из пула уже решенных задач, балансируя эффективность и стабильность обучения.

Результаты бенчмарков: на LiveCodeBench v6 MiMo-7B-RL набрала 49.3%, обойдя QwQ-32B на 10 пунктов, а на AIME 2025 — 55.4%, оставив позади OpenAI o1-mini. При этом базовая версия модели уже показывала 75.2% на BBH, что выше аналогов своего класса.

▶️ Состав набора:

🟠MiMo-7B-Base - базовая модель с потенциалом рассуждений;

🟠MiMo-7B-RL-Zero - RL-модель, обученная на основе базовой;

🟠MiMo-7B-SFT - модель SFT, обученная на основе MiMo-7B-Base;

🟢MiMo-7B-RL - RL-модель, обученная на основе SFT-модели, та, которая в бенчмарках обошла OpenAI o1-mini.


⚠️ Разработчики рекомендуют использовать для локального инференса их форк vLLM , он поддерживает MTP (Multiple-Token Prediction), но и на HF Transformers инференс тоже работает.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #RL #Xiaomi #MiMo
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2



tgoop.com/bigdatai/1286
Create:
Last Update:

🌟 MiMo-7B: Набор компактных ризонинг-моделей от Xiaomi.

Xiaomi выпустила в опенсорсный релиз MiMo-7B — набор языковых моделей, созданных для решения сложных задач, от математики до генерации кода.

Несмотря на скромные 7 млрд. параметров, модель демонстрирует результаты, превосходящие 32B-конкурентов, разрушая стереотипы о зависимости качества от размера.

Создание MiMo началось с предтрейна на 25 трлн. токенов, где акцент был на повышении плотности логических паттернов.

Для этого разработчики пересмотрели обработку данных: улучшили извлечение математических формул и блоков кода из веб-страниц, добавили синтетические данные, сгенерированные топовыми ризонинг-моделями, и все это обработали уникальной стратегией смешивания.

На первых этапах доля STEM-контента достигала 70%, а на финальном — добавили синтетику и расширили контекст до 32K токенов.

Обучение с подкреплением на стадии посттренинга проводили на массиве из 130 тыс. задач, где каждая проверялась автоматически. Чтобы избежать reward hacking, использовали только rule-based награды.

Для сложных задач по программированию ввели систему частичных баллов (как на олимпиадах по информатике) - даже если решение не идеально, модель получает feedback за пройденные тесты. А чтобы RL не застревал на простых примерах, добавили ресэмплинг: 10% данных брали из пула уже решенных задач, балансируя эффективность и стабильность обучения.

Результаты бенчмарков: на LiveCodeBench v6 MiMo-7B-RL набрала 49.3%, обойдя QwQ-32B на 10 пунктов, а на AIME 2025 — 55.4%, оставив позади OpenAI o1-mini. При этом базовая версия модели уже показывала 75.2% на BBH, что выше аналогов своего класса.

▶️ Состав набора:

🟠MiMo-7B-Base - базовая модель с потенциалом рассуждений;

🟠MiMo-7B-RL-Zero - RL-модель, обученная на основе базовой;

🟠MiMo-7B-SFT - модель SFT, обученная на основе MiMo-7B-Base;

🟢MiMo-7B-RL - RL-модель, обученная на основе SFT-модели, та, которая в бенчмарках обошла OpenAI o1-mini.


⚠️ Разработчики рекомендуют использовать для локального инференса их форк vLLM , он поддерживает MTP (Multiple-Token Prediction), но и на HF Transformers инференс тоже работает.


📌Лицензирование: MIT License.


🟡Набор моделей
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #RL #Xiaomi #MiMo

BY Big Data AI







Share with your friend now:
tgoop.com/bigdatai/1286

View MORE
Open in Telegram


Telegram News

Date: |

While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. The main design elements of your Telegram channel include a name, bio (brief description), and avatar. Your bio should be: Just as the Bitcoin turmoil continues, crypto traders have taken to Telegram to voice their feelings. Crypto investors can reduce their anxiety about losses by joining the “Bear Market Screaming Therapy Group” on Telegram. Step-by-step tutorial on desktop: Add up to 50 administrators
from us


Telegram Big Data AI
FROM American