BIGDATAI Telegram 904
Forwarded from Machinelearning
🌟 Zamba2-Instruct: Π΄Π²Π΅ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Π΅ SLM Π½Π° 2.7 ΠΈ 1.2 ΠΌΠ»Ρ€Π΄. ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ².

Zamba2-Instruct - сСмСйство инструктивных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π° Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π΅ Mamba2+Transformers для NLP-Π·Π°Π΄Π°Ρ‡.

Π’ сСмСйствС 2 ΠΌΠΎΠ΄Π΅Π»ΠΈ:

🟒Zamba2-1.2B-instruct;
🟠Zamba2-2.7B-instruct.

Высокая ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ сСмСйства ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ€Π΅Π»Π΅Π²Π°Π½Ρ‚Π½Ρ‹ΠΌΠΈ Transformers-only модСлями достигаСтся Π·Π° счСт ΠΊΠΎΠ½ΠΊΠ°Ρ‚Π΅Π½Π°Ρ†ΠΈΠΈ эмбСдингов ΠΌΠΎΠ΄Π΅Π»ΠΈ с Π²Ρ…ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ для Π±Π»ΠΎΠΊΠ° внимания ΠΈ использованиС LoRA projection matrices ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ MLP-слою.

МодСли Ρ„Π°ΠΉΠ½Ρ‚ΡŽΠ½ΠΈΠ»ΠΈΡΡŒ (SFT+DPO) Π½Π° instruct-ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π°Π±ΠΎΡ€Π°Ρ… Π΄Π°Π½Π½Ρ‹Ρ… (ultrachat_200k, Infinity-Instruct, ultrafeedback_binarized, orca_dpo_pairs ΠΈ OpenHermesPreferences).

ВСсты Zamba2-Instruct продСмонстрировали Π²Π½ΡƒΡˆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ тСкста ΠΈ эффСктивноС использованиС памяти, обходя MT-bench Π±ΠΎΠ»Π΅Π΅ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Π΅ ΠΏΠΎ количСству ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈ/ (Zamba2-Instruct-2.7B ΠΏΡ€Π΅Π²Π·ΠΎΡˆΠ»Π° Mistral-7B-Instruct-v0.1, Π° Zamba2-Instruct-1.2B - Gemma2-2B-Instruct)

⚠️ Для запуска Π½Π° Π‘PU ΡƒΠΊΠ°ΠΆΠΈΡ‚Π΅ use_mamba_kernels=False ΠΏΡ€ΠΈ Π·Π°Π³Ρ€ΡƒΠ·ΠΊΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ AutoModelForCausalLM.from_pretrained.


β–ΆοΈΠ›ΠΎΠΊΠ°Π»ΡŒΠ½Π°Ρ установка ΠΈ инфСрСнс Zamba2-2.7B-Instruct:

# Clone repo
git clone https://github.com/Zyphra/transformers_zamba2.git
cd transformers_zamba2

# Install the repository & accelerate:
pip install -e .
pip install accelerate

# Inference:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-2.7B-instruct")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-2.7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16)

user_turn_1 = "user_prompt1."
assistant_turn_1 = "assistant_prompt."
user_turn_2 = "user_prompt2."
sample = [{'role': 'user', 'content': user_turn_1}, {'role': 'assistant', 'content': assistant_turn_1}, {'role': 'user', 'content': user_turn_2}]
chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)

input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=150, return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
print((tokenizer.decode(outputs[0])))



πŸ“ŒΠ›ΠΈΡ†Π΅Π½Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ : Apache 2.0 License.


πŸŸ‘ΠΠ°Π±ΠΎΡ€ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π° HF
πŸ–₯GitHub


@ai_machinelearning_big_data

#AI #ML #SLM #Zamba2 #Instruct
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❀5πŸ‘2πŸ”₯1



tgoop.com/bigdatai/904
Create:
Last Update:

🌟 Zamba2-Instruct: Π΄Π²Π΅ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Π΅ SLM Π½Π° 2.7 ΠΈ 1.2 ΠΌΠ»Ρ€Π΄. ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ².

Zamba2-Instruct - сСмСйство инструктивных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π° Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π΅ Mamba2+Transformers для NLP-Π·Π°Π΄Π°Ρ‡.

Π’ сСмСйствС 2 ΠΌΠΎΠ΄Π΅Π»ΠΈ:

🟒Zamba2-1.2B-instruct;
🟠Zamba2-2.7B-instruct.

Высокая ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ сСмСйства ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ€Π΅Π»Π΅Π²Π°Π½Ρ‚Π½Ρ‹ΠΌΠΈ Transformers-only модСлями достигаСтся Π·Π° счСт ΠΊΠΎΠ½ΠΊΠ°Ρ‚Π΅Π½Π°Ρ†ΠΈΠΈ эмбСдингов ΠΌΠΎΠ΄Π΅Π»ΠΈ с Π²Ρ…ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ для Π±Π»ΠΎΠΊΠ° внимания ΠΈ использованиС LoRA projection matrices ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ MLP-слою.

МодСли Ρ„Π°ΠΉΠ½Ρ‚ΡŽΠ½ΠΈΠ»ΠΈΡΡŒ (SFT+DPO) Π½Π° instruct-ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π°Π±ΠΎΡ€Π°Ρ… Π΄Π°Π½Π½Ρ‹Ρ… (ultrachat_200k, Infinity-Instruct, ultrafeedback_binarized, orca_dpo_pairs ΠΈ OpenHermesPreferences).

ВСсты Zamba2-Instruct продСмонстрировали Π²Π½ΡƒΡˆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ тСкста ΠΈ эффСктивноС использованиС памяти, обходя MT-bench Π±ΠΎΠ»Π΅Π΅ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Π΅ ΠΏΠΎ количСству ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΌΠΎΠ΄Π΅Π»ΠΈ/ (Zamba2-Instruct-2.7B ΠΏΡ€Π΅Π²Π·ΠΎΡˆΠ»Π° Mistral-7B-Instruct-v0.1, Π° Zamba2-Instruct-1.2B - Gemma2-2B-Instruct)

⚠️ Для запуска Π½Π° Π‘PU ΡƒΠΊΠ°ΠΆΠΈΡ‚Π΅ use_mamba_kernels=False ΠΏΡ€ΠΈ Π·Π°Π³Ρ€ΡƒΠ·ΠΊΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ AutoModelForCausalLM.from_pretrained.


β–ΆοΈΠ›ΠΎΠΊΠ°Π»ΡŒΠ½Π°Ρ установка ΠΈ инфСрСнс Zamba2-2.7B-Instruct:

# Clone repo
git clone https://github.com/Zyphra/transformers_zamba2.git
cd transformers_zamba2

# Install the repository & accelerate:
pip install -e .
pip install accelerate

# Inference:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-2.7B-instruct")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-2.7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16)

user_turn_1 = "user_prompt1."
assistant_turn_1 = "assistant_prompt."
user_turn_2 = "user_prompt2."
sample = [{'role': 'user', 'content': user_turn_1}, {'role': 'assistant', 'content': assistant_turn_1}, {'role': 'user', 'content': user_turn_2}]
chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)

input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=150, return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
print((tokenizer.decode(outputs[0])))



πŸ“ŒΠ›ΠΈΡ†Π΅Π½Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ : Apache 2.0 License.


πŸŸ‘ΠΠ°Π±ΠΎΡ€ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π° HF
πŸ–₯GitHub


@ai_machinelearning_big_data

#AI #ML #SLM #Zamba2 #Instruct

BY Big Data AI


Share with your friend now:
tgoop.com/bigdatai/904

View MORE
Open in Telegram


Telegram News

Date: |

fire bomb molotov November 18 Dylan Hollingsworth yau ma tei While the character limit is 255, try to fit into 200 characters. This way, users will be able to take in your text fast and efficiently. Reveal the essence of your channel and provide contact information. For example, you can add a bot name, link to your pricing plans, etc. In handing down the sentence yesterday, deputy judge Peter Hui Shiu-keung of the district court said that even if Ng did not post the messages, he cannot shirk responsibility as the owner and administrator of such a big group for allowing these messages that incite illegal behaviors to exist. There have been several contributions to the group with members posting voice notes of screaming, yelling, groaning, and wailing in different rhythms and pitches. Calling out the β€œdegenerate” community or the crypto obsessives that engage in high-risk trading, Co-founder of NFT renting protocol Rentable World emiliano.eth shared this group on his Twitter. He wrote: β€œhey degen, are you stressed? Just let it out all out. Voice only tg channel for screaming”. To delete a channel with over 1,000 subscribers, you need to contact user support
from us


Telegram Big Data AI
FROM American