Warning: file_put_contents(aCache/aDaily/post/bigdatai/-718-719-720-718-): Failed to open stream: No space left on device in /var/www/tgoop/post.php on line 50
Big Data AI@bigdatai P.719
BIGDATAI Telegram 719
Forwarded from Machinelearning
🌟 DG-Mesh: Построение высококачественных полигональных сеток из монокулярного видео.

DG-Mesh реконструирует высококачественную динамическую 3D-сетку с согласованными вершинами из монокулярного видео. В пайплайне используются 3D-гауссовы всплески для представления динамических сцен и дифференцируемые алгоритмы для построения полигонов.

DG-Mesh позволяет отслеживать движение вершин, упрощая текстурирование динамических объектов.
Метод эффективно использует память и полностью дифференцируем, что позволяет выполнять оптимизацию 3D-сетки целевого объекта напрямую.

В репозитории на Github представлен код для локальной тренировки с использованием датасетов:

- D-NeRF
- DG-Mesh
- NeuralActor
- Кастомный датасет, снятый на Iphone 14 Pro и обработанный в Record3D, RealityCheck и маскированный в DEVA.

🖥 Локальный запуск:

conda create -n dg-mesh python=3.9
conda activate dg-mesh
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

# Install nvdiffrast
pip install git+https://github.com/NVlabs/tiny-cuda-nn#subdirectory=bindings/torch
pip install git+https://github.com/NVlabs/nvdiffrast/

# Install pytorch3d
export FORCE_CUDA=1
conda install -c fvcore -c iopath -c conda-forge fvcore iopath -y
pip install "git+https://github.com/facebookresearch/pytorch3d.git"

# Clone this repository
git clone https://github.com/Isabella98Liu/DG-Mesh.git
cd DG-Mesh

# Install submodules
pip install dgmesh/submodules/diff-gaussian-rasterization
pip install dgmesh/submodules/simple-knn

# Install other dependencies
pip install -r requirements.txt


🟡 Страница проекта
🖥 GitHub [ Stars: 234 | Issues: 6 | Forks: 2 ]
🟡 Arxiv

@ai_machinelearning_big_data

#Video2Mesh #3D #ML #NeRF
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍2🔥2



tgoop.com/bigdatai/719
Create:
Last Update:

🌟 DG-Mesh: Построение высококачественных полигональных сеток из монокулярного видео.

DG-Mesh реконструирует высококачественную динамическую 3D-сетку с согласованными вершинами из монокулярного видео. В пайплайне используются 3D-гауссовы всплески для представления динамических сцен и дифференцируемые алгоритмы для построения полигонов.

DG-Mesh позволяет отслеживать движение вершин, упрощая текстурирование динамических объектов.
Метод эффективно использует память и полностью дифференцируем, что позволяет выполнять оптимизацию 3D-сетки целевого объекта напрямую.

В репозитории на Github представлен код для локальной тренировки с использованием датасетов:

- D-NeRF
- DG-Mesh
- NeuralActor
- Кастомный датасет, снятый на Iphone 14 Pro и обработанный в Record3D, RealityCheck и маскированный в DEVA.

🖥 Локальный запуск:

conda create -n dg-mesh python=3.9
conda activate dg-mesh
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

# Install nvdiffrast
pip install git+https://github.com/NVlabs/tiny-cuda-nn#subdirectory=bindings/torch
pip install git+https://github.com/NVlabs/nvdiffrast/

# Install pytorch3d
export FORCE_CUDA=1
conda install -c fvcore -c iopath -c conda-forge fvcore iopath -y
pip install "git+https://github.com/facebookresearch/pytorch3d.git"

# Clone this repository
git clone https://github.com/Isabella98Liu/DG-Mesh.git
cd DG-Mesh

# Install submodules
pip install dgmesh/submodules/diff-gaussian-rasterization
pip install dgmesh/submodules/simple-knn

# Install other dependencies
pip install -r requirements.txt


🟡 Страница проекта
🖥 GitHub [ Stars: 234 | Issues: 6 | Forks: 2 ]
🟡 Arxiv

@ai_machinelearning_big_data

#Video2Mesh #3D #ML #NeRF

BY Big Data AI





Share with your friend now:
tgoop.com/bigdatai/719

View MORE
Open in Telegram


Telegram News

Date: |

With the administration mulling over limiting access to doxxing groups, a prominent Telegram doxxing group apparently went on a "revenge spree." Add the logo from your device. Adjust the visible area of your image. Congratulations! Now your Telegram channel has a face Click “Save”.! Telegram channels enable users to broadcast messages to multiple users simultaneously. Like on social media, users need to subscribe to your channel to get access to your content published by one or more administrators. 3How to create a Telegram channel? A new window will come up. Enter your channel name and bio. (See the character limits above.) Click “Create.”
from us


Telegram Big Data AI
FROM American