BIGDATAI Telegram 1478
Forwarded from Machinelearning
📌Как создавали RL-агент AutoGLM-OS, который выбил SOTA на OSWorld, обогнав OpenAI и Anthropic.

Автономные агенты, способные управлять рабочим столом - это Грааль современного HCI. Но их обучение сопряжено с трудностями: GUI созданы для людей, а не для машин, а масштабирование RL упирается в неэффективность и нестабильность сред.

В Z.ai сделали фреймворк COMPUTERRL, который лег в основу агента AutoGLM-OS. Результат - state-of-the-art на бенчмарке OSWorld: 48.1% успешных выполнений и это лучше, чем у OpenAI CUA 03 (42.9%), UI-TARS-1.5 (42.5%) и Claude 4.0 Sonnet (30.7%).

OSWorld — это крупный бенчмарк из 369 заданий для проверки многомодальных ИИ-агентов в реальных условиях. Он работает в Ubuntu, Windows и macOS.

В нем ИИ выполняет открытые задачи: работает с веб- и десктопными приложениями, управляет файлами, запускает процессы. Каждое задание имеет четкие начальные условия и скрипты для оценки, чтобы результаты можно было воспроизвести.


Такие высокие показатели - результат комбинации 3-х инноваций.

🟡Новая парадигма взаимодействия API-GUI.

Фреймворк объединяет GUI-взаимодействия с быстрыми и точными API-вызовами образуя систему, которая через LLM автоматически анализирует примеры задач, генерирует необходимый API-код для стандартных приложений Ubuntu и даже создает для него базовые тесты.
Таким образом, агент использует быстрые API там, где это возможно, и переключается на GUI для общих задач, что повышает и скорость, и надежность. Абляция показала, что переход от GUI-only к API-GUI поднимает средний показатель успеха с 11.2% до 26.2%.

🟡Масштабируемая распределенная RL-инфраструктура.

OSWorld крайне ресурсоемок, и запуск множества его экземпляров на одном узле это тот еще квест. Z.ai полностью переработали эту среду, используя qemu-in-docker для легковесного развертывания VM, gRPC для связи между узлами и полностью асинхронный фреймворк AgentRL. Это позволило создать кластер из тысяч параллельных виртуальных сред, к котором онлайн-обучение RL-агентов стало максимально эффективным.

🟡Стратегия обучения Entropulse.

Entropulse решает проблему коллапса энтропии, чередуя фазы RL с периодическими сессиями SFT. Во время RL-фазы собираются все успешные траектории, и на их основе формируется новый SFT-датасет. Затем модель дообучается на этом датасете, что позволяет восстановить её исследовательскую способность без потери производительности. После этого запускается вторая, более эффективная фаза RL.

Эта стратегия позволила AutoGLM-OS, построенному на базе 9B GLM-4, достичь финального результата в 48.1%, в то время как после первой RL-фазы показатель был 42.0%.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #Agents #AutoGLM #Zai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2



tgoop.com/bigdatai/1478
Create:
Last Update:

📌Как создавали RL-агент AutoGLM-OS, который выбил SOTA на OSWorld, обогнав OpenAI и Anthropic.

Автономные агенты, способные управлять рабочим столом - это Грааль современного HCI. Но их обучение сопряжено с трудностями: GUI созданы для людей, а не для машин, а масштабирование RL упирается в неэффективность и нестабильность сред.

В Z.ai сделали фреймворк COMPUTERRL, который лег в основу агента AutoGLM-OS. Результат - state-of-the-art на бенчмарке OSWorld: 48.1% успешных выполнений и это лучше, чем у OpenAI CUA 03 (42.9%), UI-TARS-1.5 (42.5%) и Claude 4.0 Sonnet (30.7%).

OSWorld — это крупный бенчмарк из 369 заданий для проверки многомодальных ИИ-агентов в реальных условиях. Он работает в Ubuntu, Windows и macOS.

В нем ИИ выполняет открытые задачи: работает с веб- и десктопными приложениями, управляет файлами, запускает процессы. Каждое задание имеет четкие начальные условия и скрипты для оценки, чтобы результаты можно было воспроизвести.


Такие высокие показатели - результат комбинации 3-х инноваций.

🟡Новая парадигма взаимодействия API-GUI.

Фреймворк объединяет GUI-взаимодействия с быстрыми и точными API-вызовами образуя систему, которая через LLM автоматически анализирует примеры задач, генерирует необходимый API-код для стандартных приложений Ubuntu и даже создает для него базовые тесты.
Таким образом, агент использует быстрые API там, где это возможно, и переключается на GUI для общих задач, что повышает и скорость, и надежность. Абляция показала, что переход от GUI-only к API-GUI поднимает средний показатель успеха с 11.2% до 26.2%.

🟡Масштабируемая распределенная RL-инфраструктура.

OSWorld крайне ресурсоемок, и запуск множества его экземпляров на одном узле это тот еще квест. Z.ai полностью переработали эту среду, используя qemu-in-docker для легковесного развертывания VM, gRPC для связи между узлами и полностью асинхронный фреймворк AgentRL. Это позволило создать кластер из тысяч параллельных виртуальных сред, к котором онлайн-обучение RL-агентов стало максимально эффективным.

🟡Стратегия обучения Entropulse.

Entropulse решает проблему коллапса энтропии, чередуя фазы RL с периодическими сессиями SFT. Во время RL-фазы собираются все успешные траектории, и на их основе формируется новый SFT-датасет. Затем модель дообучается на этом датасете, что позволяет восстановить её исследовательскую способность без потери производительности. После этого запускается вторая, более эффективная фаза RL.

Эта стратегия позволила AutoGLM-OS, построенному на базе 9B GLM-4, достичь финального результата в 48.1%, в то время как после первой RL-фазы показатель был 42.0%.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #Agents #AutoGLM #Zai

BY Big Data AI







Share with your friend now:
tgoop.com/bigdatai/1478

View MORE
Open in Telegram


Telegram News

Date: |

On June 7, Perekopsky met with Brazilian President Jair Bolsonaro, an avid user of the platform. According to the firm's VP, the main subject of the meeting was "freedom of expression." Developing social channels based on exchanging a single message isn’t exactly new, of course. Back in 2014, the “Yo” app was launched with the sole purpose of enabling users to send each other the greeting “Yo.” Content is editable within two days of publishing The Channel name and bio must be no more than 255 characters long Some Telegram Channels content management tips
from us


Telegram Big Data AI
FROM American